mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 12:03:36 +00:00 
			
		
		
		
	There is no need to re-hash the input image each iteration of the loop. This also reverts PR #4026 as it was determined the cache hits it avoids were actually valid.
		
			
				
	
	
		
			328 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			328 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
import math
 | 
						|
import os
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
import torch
 | 
						|
import tqdm
 | 
						|
 | 
						|
from typing import Callable, List, OrderedDict, Tuple
 | 
						|
from functools import partial
 | 
						|
from dataclasses import dataclass
 | 
						|
 | 
						|
from modules import processing, shared, images, devices, sd_models
 | 
						|
from modules.shared import opts
 | 
						|
import modules.gfpgan_model
 | 
						|
from modules.ui import plaintext_to_html
 | 
						|
import modules.codeformer_model
 | 
						|
import piexif
 | 
						|
import piexif.helper
 | 
						|
import gradio as gr
 | 
						|
 | 
						|
 | 
						|
class LruCache(OrderedDict):
 | 
						|
    @dataclass(frozen=True)
 | 
						|
    class Key:
 | 
						|
        image_hash: int
 | 
						|
        info_hash: int
 | 
						|
        args_hash: int
 | 
						|
 | 
						|
    @dataclass
 | 
						|
    class Value:
 | 
						|
        image: Image.Image
 | 
						|
        info: str
 | 
						|
 | 
						|
    def __init__(self, max_size: int = 5, *args, **kwargs):
 | 
						|
        super().__init__(*args, **kwargs)
 | 
						|
        self._max_size = max_size
 | 
						|
 | 
						|
    def get(self, key: LruCache.Key) -> LruCache.Value:
 | 
						|
        ret = super().get(key)
 | 
						|
        if ret is not None:
 | 
						|
            self.move_to_end(key)  # Move to end of eviction list
 | 
						|
        return ret
 | 
						|
 | 
						|
    def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
 | 
						|
        self[key] = value
 | 
						|
        while len(self) > self._max_size:
 | 
						|
            self.popitem(last=False)
 | 
						|
 | 
						|
 | 
						|
cached_images: LruCache = LruCache(max_size=5)
 | 
						|
 | 
						|
 | 
						|
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool):
 | 
						|
    devices.torch_gc()
 | 
						|
 | 
						|
    imageArr = []
 | 
						|
    # Also keep track of original file names
 | 
						|
    imageNameArr = []
 | 
						|
    outputs = []
 | 
						|
    
 | 
						|
    if extras_mode == 1:
 | 
						|
        #convert file to pillow image
 | 
						|
        for img in image_folder:
 | 
						|
            image = Image.open(img)
 | 
						|
            imageArr.append(image)
 | 
						|
            imageNameArr.append(os.path.splitext(img.orig_name)[0])
 | 
						|
    elif extras_mode == 2:
 | 
						|
        assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
 | 
						|
 | 
						|
        if input_dir == '':
 | 
						|
            return outputs, "Please select an input directory.", ''
 | 
						|
        image_list = shared.listfiles(input_dir)
 | 
						|
        for img in image_list:
 | 
						|
            try:
 | 
						|
                image = Image.open(img)
 | 
						|
            except Exception:
 | 
						|
                continue
 | 
						|
            imageArr.append(image)
 | 
						|
            imageNameArr.append(img)
 | 
						|
    else:
 | 
						|
        imageArr.append(image)
 | 
						|
        imageNameArr.append(None)
 | 
						|
 | 
						|
    if extras_mode == 2 and output_dir != '':
 | 
						|
        outpath = output_dir
 | 
						|
    else:
 | 
						|
        outpath = opts.outdir_samples or opts.outdir_extras_samples
 | 
						|
 | 
						|
    # Extra operation definitions
 | 
						|
 | 
						|
    def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
 | 
						|
        restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
 | 
						|
        res = Image.fromarray(restored_img)
 | 
						|
 | 
						|
        if gfpgan_visibility < 1.0:
 | 
						|
            res = Image.blend(image, res, gfpgan_visibility)
 | 
						|
 | 
						|
        info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
 | 
						|
        return (res, info)
 | 
						|
 | 
						|
    def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
 | 
						|
        restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
 | 
						|
        res = Image.fromarray(restored_img)
 | 
						|
 | 
						|
        if codeformer_visibility < 1.0:
 | 
						|
            res = Image.blend(image, res, codeformer_visibility)
 | 
						|
 | 
						|
        info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
 | 
						|
        return (res, info)
 | 
						|
 | 
						|
    def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
 | 
						|
        upscaler = shared.sd_upscalers[scaler_index]
 | 
						|
        res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
 | 
						|
        if mode == 1 and crop:
 | 
						|
            cropped = Image.new("RGB", (resize_w, resize_h))
 | 
						|
            cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
 | 
						|
            res = cropped
 | 
						|
        return res
 | 
						|
 | 
						|
    def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
 | 
						|
        # Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
 | 
						|
        nonlocal upscaling_resize
 | 
						|
        if resize_mode == 1:
 | 
						|
            upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
 | 
						|
            crop_info = " (crop)" if upscaling_crop else ""
 | 
						|
            info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
 | 
						|
        return (image, info)
 | 
						|
 | 
						|
    @dataclass
 | 
						|
    class UpscaleParams:
 | 
						|
        upscaler_idx: int
 | 
						|
        blend_alpha: float
 | 
						|
 | 
						|
    def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
 | 
						|
        blended_result: Image.Image = None
 | 
						|
        image_hash: str = hash(np.array(image.getdata()).tobytes())
 | 
						|
        for upscaler in params:
 | 
						|
            upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
 | 
						|
                            upscaling_resize_w, upscaling_resize_h, upscaling_crop)
 | 
						|
            cache_key = LruCache.Key(image_hash=image_hash,
 | 
						|
                                     info_hash=hash(info),
 | 
						|
                                     args_hash=hash(upscale_args))
 | 
						|
            cached_entry = cached_images.get(cache_key)
 | 
						|
            if cached_entry is None:
 | 
						|
                res = upscale(image, *upscale_args)
 | 
						|
                info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
 | 
						|
                cached_images.put(cache_key, LruCache.Value(image=res, info=info))
 | 
						|
            else:
 | 
						|
                res, info = cached_entry.image, cached_entry.info
 | 
						|
 | 
						|
            if blended_result is None:
 | 
						|
                blended_result = res
 | 
						|
            else:
 | 
						|
                blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
 | 
						|
        return (blended_result, info)
 | 
						|
 | 
						|
    # Build a list of operations to run
 | 
						|
    facefix_ops: List[Callable] = []
 | 
						|
    facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
 | 
						|
    facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
 | 
						|
 | 
						|
    upscale_ops: List[Callable] = []
 | 
						|
    upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
 | 
						|
 | 
						|
    if upscaling_resize != 0:
 | 
						|
        step_params: List[UpscaleParams] = []
 | 
						|
        step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
 | 
						|
        if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
 | 
						|
            step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
 | 
						|
 | 
						|
        upscale_ops.append(partial(run_upscalers_blend, step_params))
 | 
						|
 | 
						|
    extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
 | 
						|
 | 
						|
    for image, image_name in zip(imageArr, imageNameArr):
 | 
						|
        if image is None:
 | 
						|
            return outputs, "Please select an input image.", ''
 | 
						|
        existing_pnginfo = image.info or {}
 | 
						|
 | 
						|
        image = image.convert("RGB")
 | 
						|
        info = ""
 | 
						|
        # Run each operation on each image
 | 
						|
        for op in extras_ops:
 | 
						|
            image, info = op(image, info)
 | 
						|
 | 
						|
        if opts.use_original_name_batch and image_name != None:
 | 
						|
            basename = os.path.splitext(os.path.basename(image_name))[0]
 | 
						|
        else:
 | 
						|
            basename = ''
 | 
						|
 | 
						|
        images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
 | 
						|
                          no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
 | 
						|
 | 
						|
        if opts.enable_pnginfo:
 | 
						|
            image.info = existing_pnginfo
 | 
						|
            image.info["extras"] = info
 | 
						|
 | 
						|
        if extras_mode != 2 or show_extras_results :
 | 
						|
            outputs.append(image)
 | 
						|
 | 
						|
    devices.torch_gc()
 | 
						|
 | 
						|
    return outputs, plaintext_to_html(info), ''
 | 
						|
 | 
						|
def clear_cache():
 | 
						|
    cached_images.clear()
 | 
						|
 | 
						|
 | 
						|
def run_pnginfo(image):
 | 
						|
    if image is None:
 | 
						|
        return '', '', ''
 | 
						|
 | 
						|
    items = image.info
 | 
						|
    geninfo = ''
 | 
						|
 | 
						|
    if "exif" in image.info:
 | 
						|
        exif = piexif.load(image.info["exif"])
 | 
						|
        exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
 | 
						|
        try:
 | 
						|
            exif_comment = piexif.helper.UserComment.load(exif_comment)
 | 
						|
        except ValueError:
 | 
						|
            exif_comment = exif_comment.decode('utf8', errors="ignore")
 | 
						|
 | 
						|
        items['exif comment'] = exif_comment
 | 
						|
        geninfo = exif_comment
 | 
						|
 | 
						|
        for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
 | 
						|
                      'loop', 'background', 'timestamp', 'duration']:
 | 
						|
            items.pop(field, None)
 | 
						|
 | 
						|
    geninfo = items.get('parameters', geninfo)
 | 
						|
 | 
						|
    info = ''
 | 
						|
    for key, text in items.items():
 | 
						|
        info += f"""
 | 
						|
<div>
 | 
						|
<p><b>{plaintext_to_html(str(key))}</b></p>
 | 
						|
<p>{plaintext_to_html(str(text))}</p>
 | 
						|
</div>
 | 
						|
""".strip()+"\n"
 | 
						|
 | 
						|
    if len(info) == 0:
 | 
						|
        message = "Nothing found in the image."
 | 
						|
        info = f"<div><p>{message}<p></div>"
 | 
						|
 | 
						|
    return '', geninfo, info
 | 
						|
 | 
						|
 | 
						|
def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_name, interp_method, multiplier, save_as_half, custom_name):
 | 
						|
    def weighted_sum(theta0, theta1, alpha):
 | 
						|
        return ((1 - alpha) * theta0) + (alpha * theta1)
 | 
						|
 | 
						|
    def get_difference(theta1, theta2):
 | 
						|
        return theta1 - theta2
 | 
						|
 | 
						|
    def add_difference(theta0, theta1_2_diff, alpha):
 | 
						|
        return theta0 + (alpha * theta1_2_diff)
 | 
						|
 | 
						|
    primary_model_info = sd_models.checkpoints_list[primary_model_name]
 | 
						|
    secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
 | 
						|
    teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
 | 
						|
 | 
						|
    print(f"Loading {primary_model_info.filename}...")
 | 
						|
    primary_model = torch.load(primary_model_info.filename, map_location='cpu')
 | 
						|
    theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
 | 
						|
 | 
						|
    print(f"Loading {secondary_model_info.filename}...")
 | 
						|
    secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
 | 
						|
    theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
 | 
						|
 | 
						|
    if teritary_model_info is not None:
 | 
						|
        print(f"Loading {teritary_model_info.filename}...")
 | 
						|
        teritary_model = torch.load(teritary_model_info.filename, map_location='cpu')
 | 
						|
        theta_2 = sd_models.get_state_dict_from_checkpoint(teritary_model)
 | 
						|
    else:
 | 
						|
        teritary_model = None
 | 
						|
        theta_2 = None
 | 
						|
 | 
						|
    theta_funcs = {
 | 
						|
        "Weighted sum": (None, weighted_sum),
 | 
						|
        "Add difference": (get_difference, add_difference),
 | 
						|
    }
 | 
						|
    theta_func1, theta_func2 = theta_funcs[interp_method]
 | 
						|
 | 
						|
    print(f"Merging...")
 | 
						|
 | 
						|
    if theta_func1:
 | 
						|
        for key in tqdm.tqdm(theta_1.keys()):
 | 
						|
            if 'model' in key:
 | 
						|
                if key in theta_2:
 | 
						|
                    t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
 | 
						|
                    theta_1[key] = theta_func1(theta_1[key], t2)
 | 
						|
                else:
 | 
						|
                    theta_1[key] = torch.zeros_like(theta_1[key])
 | 
						|
    del theta_2, teritary_model
 | 
						|
 | 
						|
    for key in tqdm.tqdm(theta_0.keys()):
 | 
						|
        if 'model' in key and key in theta_1:
 | 
						|
 | 
						|
            theta_0[key] = theta_func2(theta_0[key], theta_1[key], multiplier)
 | 
						|
 | 
						|
            if save_as_half:
 | 
						|
                theta_0[key] = theta_0[key].half()
 | 
						|
 | 
						|
    # I believe this part should be discarded, but I'll leave it for now until I am sure
 | 
						|
    for key in theta_1.keys():
 | 
						|
        if 'model' in key and key not in theta_0:
 | 
						|
            theta_0[key] = theta_1[key]
 | 
						|
            if save_as_half:
 | 
						|
                theta_0[key] = theta_0[key].half()
 | 
						|
 | 
						|
    ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
 | 
						|
 | 
						|
    filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt'
 | 
						|
    filename = filename if custom_name == '' else (custom_name + '.ckpt')
 | 
						|
    output_modelname = os.path.join(ckpt_dir, filename)
 | 
						|
 | 
						|
    print(f"Saving to {output_modelname}...")
 | 
						|
    torch.save(primary_model, output_modelname)
 | 
						|
 | 
						|
    sd_models.list_models()
 | 
						|
 | 
						|
    print(f"Checkpoint saved.")
 | 
						|
    return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
 |