mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			120 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from functools import wraps
 | 
						|
import html
 | 
						|
import time
 | 
						|
 | 
						|
from modules import shared, progress, errors, devices, fifo_lock
 | 
						|
 | 
						|
queue_lock = fifo_lock.FIFOLock()
 | 
						|
 | 
						|
 | 
						|
def wrap_queued_call(func):
 | 
						|
    def f(*args, **kwargs):
 | 
						|
        with queue_lock:
 | 
						|
            res = func(*args, **kwargs)
 | 
						|
 | 
						|
        return res
 | 
						|
 | 
						|
    return f
 | 
						|
 | 
						|
 | 
						|
def wrap_gradio_gpu_call(func, extra_outputs=None):
 | 
						|
    @wraps(func)
 | 
						|
    def f(*args, **kwargs):
 | 
						|
 | 
						|
        # if the first argument is a string that says "task(...)", it is treated as a job id
 | 
						|
        if args and type(args[0]) == str and args[0].startswith("task(") and args[0].endswith(")"):
 | 
						|
            id_task = args[0]
 | 
						|
            progress.add_task_to_queue(id_task)
 | 
						|
        else:
 | 
						|
            id_task = None
 | 
						|
 | 
						|
        with queue_lock:
 | 
						|
            shared.state.begin(job=id_task)
 | 
						|
            progress.start_task(id_task)
 | 
						|
 | 
						|
            try:
 | 
						|
                res = func(*args, **kwargs)
 | 
						|
                progress.record_results(id_task, res)
 | 
						|
            finally:
 | 
						|
                progress.finish_task(id_task)
 | 
						|
 | 
						|
            shared.state.end()
 | 
						|
 | 
						|
        return res
 | 
						|
 | 
						|
    return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
 | 
						|
 | 
						|
 | 
						|
def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
 | 
						|
    @wraps(func)
 | 
						|
    def f(*args, extra_outputs_array=extra_outputs, **kwargs):
 | 
						|
        run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
 | 
						|
        if run_memmon:
 | 
						|
            shared.mem_mon.monitor()
 | 
						|
        t = time.perf_counter()
 | 
						|
 | 
						|
        try:
 | 
						|
            res = list(func(*args, **kwargs))
 | 
						|
        except Exception as e:
 | 
						|
            # When printing out our debug argument list,
 | 
						|
            # do not print out more than a 100 KB of text
 | 
						|
            max_debug_str_len = 131072
 | 
						|
            message = "Error completing request"
 | 
						|
            arg_str = f"Arguments: {args} {kwargs}"[:max_debug_str_len]
 | 
						|
            if len(arg_str) > max_debug_str_len:
 | 
						|
                arg_str += f" (Argument list truncated at {max_debug_str_len}/{len(arg_str)} characters)"
 | 
						|
            errors.report(f"{message}\n{arg_str}", exc_info=True)
 | 
						|
 | 
						|
            shared.state.job = ""
 | 
						|
            shared.state.job_count = 0
 | 
						|
 | 
						|
            if extra_outputs_array is None:
 | 
						|
                extra_outputs_array = [None, '']
 | 
						|
 | 
						|
            error_message = f'{type(e).__name__}: {e}'
 | 
						|
            res = extra_outputs_array + [f"<div class='error'>{html.escape(error_message)}</div>"]
 | 
						|
 | 
						|
        devices.torch_gc()
 | 
						|
 | 
						|
        shared.state.skipped = False
 | 
						|
        shared.state.interrupted = False
 | 
						|
        shared.state.stopping_generation = False
 | 
						|
        shared.state.job_count = 0
 | 
						|
 | 
						|
        if not add_stats:
 | 
						|
            return tuple(res)
 | 
						|
 | 
						|
        elapsed = time.perf_counter() - t
 | 
						|
        elapsed_m = int(elapsed // 60)
 | 
						|
        elapsed_s = elapsed % 60
 | 
						|
        elapsed_text = f"{elapsed_s:.1f} sec."
 | 
						|
        if elapsed_m > 0:
 | 
						|
            elapsed_text = f"{elapsed_m} min. "+elapsed_text
 | 
						|
 | 
						|
        if run_memmon:
 | 
						|
            mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
 | 
						|
            active_peak = mem_stats['active_peak']
 | 
						|
            reserved_peak = mem_stats['reserved_peak']
 | 
						|
            sys_peak = mem_stats['system_peak']
 | 
						|
            sys_total = mem_stats['total']
 | 
						|
            sys_pct = sys_peak/max(sys_total, 1) * 100
 | 
						|
 | 
						|
            toltip_a = "Active: peak amount of video memory used during generation (excluding cached data)"
 | 
						|
            toltip_r = "Reserved: total amount of video memory allocated by the Torch library "
 | 
						|
            toltip_sys = "System: peak amount of video memory allocated by all running programs, out of total capacity"
 | 
						|
 | 
						|
            text_a = f"<abbr title='{toltip_a}'>A</abbr>: <span class='measurement'>{active_peak/1024:.2f} GB</span>"
 | 
						|
            text_r = f"<abbr title='{toltip_r}'>R</abbr>: <span class='measurement'>{reserved_peak/1024:.2f} GB</span>"
 | 
						|
            text_sys = f"<abbr title='{toltip_sys}'>Sys</abbr>: <span class='measurement'>{sys_peak/1024:.1f}/{sys_total/1024:g} GB</span> ({sys_pct:.1f}%)"
 | 
						|
 | 
						|
            vram_html = f"<p class='vram'>{text_a}, <wbr>{text_r}, <wbr>{text_sys}</p>"
 | 
						|
        else:
 | 
						|
            vram_html = ''
 | 
						|
 | 
						|
        # last item is always HTML
 | 
						|
        res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr><span class='measurement'>{elapsed_text}</span></p>{vram_html}</div>"
 | 
						|
 | 
						|
        return tuple(res)
 | 
						|
 | 
						|
    return f
 |