mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 12:03:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			223 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			223 lines
		
	
	
		
			8.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import os
 | 
						|
import sys
 | 
						|
from collections import namedtuple
 | 
						|
from pathlib import Path
 | 
						|
import re
 | 
						|
 | 
						|
import torch
 | 
						|
import torch.hub
 | 
						|
 | 
						|
from torchvision import transforms
 | 
						|
from torchvision.transforms.functional import InterpolationMode
 | 
						|
 | 
						|
from modules import devices, paths, shared, lowvram, modelloader, errors, torch_utils
 | 
						|
 | 
						|
blip_image_eval_size = 384
 | 
						|
clip_model_name = 'ViT-L/14'
 | 
						|
 | 
						|
Category = namedtuple("Category", ["name", "topn", "items"])
 | 
						|
 | 
						|
re_topn = re.compile(r"\.top(\d+)$")
 | 
						|
 | 
						|
def category_types():
 | 
						|
    return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')]
 | 
						|
 | 
						|
 | 
						|
def download_default_clip_interrogate_categories(content_dir):
 | 
						|
    print("Downloading CLIP categories...")
 | 
						|
 | 
						|
    tmpdir = f"{content_dir}_tmp"
 | 
						|
    category_types = ["artists", "flavors", "mediums", "movements"]
 | 
						|
 | 
						|
    try:
 | 
						|
        os.makedirs(tmpdir, exist_ok=True)
 | 
						|
        for category_type in category_types:
 | 
						|
            torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt"))
 | 
						|
        os.rename(tmpdir, content_dir)
 | 
						|
 | 
						|
    except Exception as e:
 | 
						|
        errors.display(e, "downloading default CLIP interrogate categories")
 | 
						|
    finally:
 | 
						|
        if os.path.exists(tmpdir):
 | 
						|
            os.removedirs(tmpdir)
 | 
						|
 | 
						|
 | 
						|
class InterrogateModels:
 | 
						|
    blip_model = None
 | 
						|
    clip_model = None
 | 
						|
    clip_preprocess = None
 | 
						|
    dtype = None
 | 
						|
    running_on_cpu = None
 | 
						|
 | 
						|
    def __init__(self, content_dir):
 | 
						|
        self.loaded_categories = None
 | 
						|
        self.skip_categories = []
 | 
						|
        self.content_dir = content_dir
 | 
						|
        self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
 | 
						|
 | 
						|
    def categories(self):
 | 
						|
        if not os.path.exists(self.content_dir):
 | 
						|
            download_default_clip_interrogate_categories(self.content_dir)
 | 
						|
 | 
						|
        if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories:
 | 
						|
           return self.loaded_categories
 | 
						|
 | 
						|
        self.loaded_categories = []
 | 
						|
 | 
						|
        if os.path.exists(self.content_dir):
 | 
						|
            self.skip_categories = shared.opts.interrogate_clip_skip_categories
 | 
						|
            category_types = []
 | 
						|
            for filename in Path(self.content_dir).glob('*.txt'):
 | 
						|
                category_types.append(filename.stem)
 | 
						|
                if filename.stem in self.skip_categories:
 | 
						|
                    continue
 | 
						|
                m = re_topn.search(filename.stem)
 | 
						|
                topn = 1 if m is None else int(m.group(1))
 | 
						|
                with open(filename, "r", encoding="utf8") as file:
 | 
						|
                    lines = [x.strip() for x in file.readlines()]
 | 
						|
 | 
						|
                self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines))
 | 
						|
 | 
						|
        return self.loaded_categories
 | 
						|
 | 
						|
    def create_fake_fairscale(self):
 | 
						|
        class FakeFairscale:
 | 
						|
            def checkpoint_wrapper(self):
 | 
						|
                pass
 | 
						|
 | 
						|
        sys.modules["fairscale.nn.checkpoint.checkpoint_activations"] = FakeFairscale
 | 
						|
 | 
						|
    def load_blip_model(self):
 | 
						|
        self.create_fake_fairscale()
 | 
						|
        import models.blip
 | 
						|
 | 
						|
        files = modelloader.load_models(
 | 
						|
            model_path=os.path.join(paths.models_path, "BLIP"),
 | 
						|
            model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
 | 
						|
            ext_filter=[".pth"],
 | 
						|
            download_name='model_base_caption_capfilt_large.pth',
 | 
						|
        )
 | 
						|
 | 
						|
        blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
 | 
						|
        blip_model.eval()
 | 
						|
 | 
						|
        return blip_model
 | 
						|
 | 
						|
    def load_clip_model(self):
 | 
						|
        import clip
 | 
						|
 | 
						|
        if self.running_on_cpu:
 | 
						|
            model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
 | 
						|
        else:
 | 
						|
            model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)
 | 
						|
 | 
						|
        model.eval()
 | 
						|
        model = model.to(devices.device_interrogate)
 | 
						|
 | 
						|
        return model, preprocess
 | 
						|
 | 
						|
    def load(self):
 | 
						|
        if self.blip_model is None:
 | 
						|
            self.blip_model = self.load_blip_model()
 | 
						|
            if not shared.cmd_opts.no_half and not self.running_on_cpu:
 | 
						|
                self.blip_model = self.blip_model.half()
 | 
						|
 | 
						|
        self.blip_model = self.blip_model.to(devices.device_interrogate)
 | 
						|
 | 
						|
        if self.clip_model is None:
 | 
						|
            self.clip_model, self.clip_preprocess = self.load_clip_model()
 | 
						|
            if not shared.cmd_opts.no_half and not self.running_on_cpu:
 | 
						|
                self.clip_model = self.clip_model.half()
 | 
						|
 | 
						|
        self.clip_model = self.clip_model.to(devices.device_interrogate)
 | 
						|
 | 
						|
        self.dtype = torch_utils.get_param(self.clip_model).dtype
 | 
						|
 | 
						|
    def send_clip_to_ram(self):
 | 
						|
        if not shared.opts.interrogate_keep_models_in_memory:
 | 
						|
            if self.clip_model is not None:
 | 
						|
                self.clip_model = self.clip_model.to(devices.cpu)
 | 
						|
 | 
						|
    def send_blip_to_ram(self):
 | 
						|
        if not shared.opts.interrogate_keep_models_in_memory:
 | 
						|
            if self.blip_model is not None:
 | 
						|
                self.blip_model = self.blip_model.to(devices.cpu)
 | 
						|
 | 
						|
    def unload(self):
 | 
						|
        self.send_clip_to_ram()
 | 
						|
        self.send_blip_to_ram()
 | 
						|
 | 
						|
        devices.torch_gc()
 | 
						|
 | 
						|
    def rank(self, image_features, text_array, top_count=1):
 | 
						|
        import clip
 | 
						|
 | 
						|
        devices.torch_gc()
 | 
						|
 | 
						|
        if shared.opts.interrogate_clip_dict_limit != 0:
 | 
						|
            text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
 | 
						|
 | 
						|
        top_count = min(top_count, len(text_array))
 | 
						|
        text_tokens = clip.tokenize(list(text_array), truncate=True).to(devices.device_interrogate)
 | 
						|
        text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
 | 
						|
        text_features /= text_features.norm(dim=-1, keepdim=True)
 | 
						|
 | 
						|
        similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
 | 
						|
        for i in range(image_features.shape[0]):
 | 
						|
            similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
 | 
						|
        similarity /= image_features.shape[0]
 | 
						|
 | 
						|
        top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
 | 
						|
        return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
 | 
						|
 | 
						|
    def generate_caption(self, pil_image):
 | 
						|
        gpu_image = transforms.Compose([
 | 
						|
            transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
 | 
						|
            transforms.ToTensor(),
 | 
						|
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
 | 
						|
        ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
 | 
						|
 | 
						|
        with torch.no_grad():
 | 
						|
            caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
 | 
						|
 | 
						|
        return caption[0]
 | 
						|
 | 
						|
    def interrogate(self, pil_image):
 | 
						|
        res = ""
 | 
						|
        shared.state.begin(job="interrogate")
 | 
						|
        try:
 | 
						|
            lowvram.send_everything_to_cpu()
 | 
						|
            devices.torch_gc()
 | 
						|
 | 
						|
            self.load()
 | 
						|
 | 
						|
            caption = self.generate_caption(pil_image)
 | 
						|
            self.send_blip_to_ram()
 | 
						|
            devices.torch_gc()
 | 
						|
 | 
						|
            res = caption
 | 
						|
 | 
						|
            clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
 | 
						|
 | 
						|
            with torch.no_grad(), devices.autocast():
 | 
						|
                image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
 | 
						|
 | 
						|
                image_features /= image_features.norm(dim=-1, keepdim=True)
 | 
						|
 | 
						|
                for cat in self.categories():
 | 
						|
                    matches = self.rank(image_features, cat.items, top_count=cat.topn)
 | 
						|
                    for match, score in matches:
 | 
						|
                        if shared.opts.interrogate_return_ranks:
 | 
						|
                            res += f", ({match}:{score/100:.3f})"
 | 
						|
                        else:
 | 
						|
                            res += f", {match}"
 | 
						|
 | 
						|
        except Exception:
 | 
						|
            errors.report("Error interrogating", exc_info=True)
 | 
						|
            res += "<error>"
 | 
						|
 | 
						|
        self.unload()
 | 
						|
        shared.state.end()
 | 
						|
 | 
						|
        return res
 |