mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	 b6e5edd746
			
		
	
	
		b6e5edd746
		
	
	
	
	
		
			
			add support for adding upscalers in extensions move LDSR, ScuNET and SwinIR to built-in extensions
		
			
				
	
	
		
			265 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			265 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # -*- coding: utf-8 -*-
 | |
| import numpy as np
 | |
| import torch
 | |
| import torch.nn as nn
 | |
| from einops import rearrange
 | |
| from einops.layers.torch import Rearrange
 | |
| from timm.models.layers import trunc_normal_, DropPath
 | |
| 
 | |
| 
 | |
| class WMSA(nn.Module):
 | |
|     """ Self-attention module in Swin Transformer
 | |
|     """
 | |
| 
 | |
|     def __init__(self, input_dim, output_dim, head_dim, window_size, type):
 | |
|         super(WMSA, self).__init__()
 | |
|         self.input_dim = input_dim
 | |
|         self.output_dim = output_dim
 | |
|         self.head_dim = head_dim
 | |
|         self.scale = self.head_dim ** -0.5
 | |
|         self.n_heads = input_dim // head_dim
 | |
|         self.window_size = window_size
 | |
|         self.type = type
 | |
|         self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
 | |
| 
 | |
|         self.relative_position_params = nn.Parameter(
 | |
|             torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads))
 | |
| 
 | |
|         self.linear = nn.Linear(self.input_dim, self.output_dim)
 | |
| 
 | |
|         trunc_normal_(self.relative_position_params, std=.02)
 | |
|         self.relative_position_params = torch.nn.Parameter(
 | |
|             self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1,
 | |
|                                                                                                                  2).transpose(
 | |
|                 0, 1))
 | |
| 
 | |
|     def generate_mask(self, h, w, p, shift):
 | |
|         """ generating the mask of SW-MSA
 | |
|         Args:
 | |
|             shift: shift parameters in CyclicShift.
 | |
|         Returns:
 | |
|             attn_mask: should be (1 1 w p p),
 | |
|         """
 | |
|         # supporting square.
 | |
|         attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
 | |
|         if self.type == 'W':
 | |
|             return attn_mask
 | |
| 
 | |
|         s = p - shift
 | |
|         attn_mask[-1, :, :s, :, s:, :] = True
 | |
|         attn_mask[-1, :, s:, :, :s, :] = True
 | |
|         attn_mask[:, -1, :, :s, :, s:] = True
 | |
|         attn_mask[:, -1, :, s:, :, :s] = True
 | |
|         attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
 | |
|         return attn_mask
 | |
| 
 | |
|     def forward(self, x):
 | |
|         """ Forward pass of Window Multi-head Self-attention module.
 | |
|         Args:
 | |
|             x: input tensor with shape of [b h w c];
 | |
|             attn_mask: attention mask, fill -inf where the value is True;
 | |
|         Returns:
 | |
|             output: tensor shape [b h w c]
 | |
|         """
 | |
|         if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
 | |
|         x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
 | |
|         h_windows = x.size(1)
 | |
|         w_windows = x.size(2)
 | |
|         # square validation
 | |
|         # assert h_windows == w_windows
 | |
| 
 | |
|         x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
 | |
|         qkv = self.embedding_layer(x)
 | |
|         q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
 | |
|         sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
 | |
|         # Adding learnable relative embedding
 | |
|         sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
 | |
|         # Using Attn Mask to distinguish different subwindows.
 | |
|         if self.type != 'W':
 | |
|             attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2)
 | |
|             sim = sim.masked_fill_(attn_mask, float("-inf"))
 | |
| 
 | |
|         probs = nn.functional.softmax(sim, dim=-1)
 | |
|         output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
 | |
|         output = rearrange(output, 'h b w p c -> b w p (h c)')
 | |
|         output = self.linear(output)
 | |
|         output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
 | |
| 
 | |
|         if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
 | |
|                                                  dims=(1, 2))
 | |
|         return output
 | |
| 
 | |
|     def relative_embedding(self):
 | |
|         cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
 | |
|         relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
 | |
|         # negative is allowed
 | |
|         return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()]
 | |
| 
 | |
| 
 | |
| class Block(nn.Module):
 | |
|     def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
 | |
|         """ SwinTransformer Block
 | |
|         """
 | |
|         super(Block, self).__init__()
 | |
|         self.input_dim = input_dim
 | |
|         self.output_dim = output_dim
 | |
|         assert type in ['W', 'SW']
 | |
|         self.type = type
 | |
|         if input_resolution <= window_size:
 | |
|             self.type = 'W'
 | |
| 
 | |
|         self.ln1 = nn.LayerNorm(input_dim)
 | |
|         self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
 | |
|         self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
 | |
|         self.ln2 = nn.LayerNorm(input_dim)
 | |
|         self.mlp = nn.Sequential(
 | |
|             nn.Linear(input_dim, 4 * input_dim),
 | |
|             nn.GELU(),
 | |
|             nn.Linear(4 * input_dim, output_dim),
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         x = x + self.drop_path(self.msa(self.ln1(x)))
 | |
|         x = x + self.drop_path(self.mlp(self.ln2(x)))
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class ConvTransBlock(nn.Module):
 | |
|     def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
 | |
|         """ SwinTransformer and Conv Block
 | |
|         """
 | |
|         super(ConvTransBlock, self).__init__()
 | |
|         self.conv_dim = conv_dim
 | |
|         self.trans_dim = trans_dim
 | |
|         self.head_dim = head_dim
 | |
|         self.window_size = window_size
 | |
|         self.drop_path = drop_path
 | |
|         self.type = type
 | |
|         self.input_resolution = input_resolution
 | |
| 
 | |
|         assert self.type in ['W', 'SW']
 | |
|         if self.input_resolution <= self.window_size:
 | |
|             self.type = 'W'
 | |
| 
 | |
|         self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path,
 | |
|                                  self.type, self.input_resolution)
 | |
|         self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
 | |
|         self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
 | |
| 
 | |
|         self.conv_block = nn.Sequential(
 | |
|             nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
 | |
|             nn.ReLU(True),
 | |
|             nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
 | |
|         )
 | |
| 
 | |
|     def forward(self, x):
 | |
|         conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
 | |
|         conv_x = self.conv_block(conv_x) + conv_x
 | |
|         trans_x = Rearrange('b c h w -> b h w c')(trans_x)
 | |
|         trans_x = self.trans_block(trans_x)
 | |
|         trans_x = Rearrange('b h w c -> b c h w')(trans_x)
 | |
|         res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
 | |
|         x = x + res
 | |
| 
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class SCUNet(nn.Module):
 | |
|     # def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256):
 | |
|     def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256):
 | |
|         super(SCUNet, self).__init__()
 | |
|         if config is None:
 | |
|             config = [2, 2, 2, 2, 2, 2, 2]
 | |
|         self.config = config
 | |
|         self.dim = dim
 | |
|         self.head_dim = 32
 | |
|         self.window_size = 8
 | |
| 
 | |
|         # drop path rate for each layer
 | |
|         dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
 | |
| 
 | |
|         self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
 | |
| 
 | |
|         begin = 0
 | |
|         self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
 | |
|                                        'W' if not i % 2 else 'SW', input_resolution)
 | |
|                         for i in range(config[0])] + \
 | |
|                        [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
 | |
| 
 | |
|         begin += config[0]
 | |
|         self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
 | |
|                                        'W' if not i % 2 else 'SW', input_resolution // 2)
 | |
|                         for i in range(config[1])] + \
 | |
|                        [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
 | |
| 
 | |
|         begin += config[1]
 | |
|         self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
 | |
|                                        'W' if not i % 2 else 'SW', input_resolution // 4)
 | |
|                         for i in range(config[2])] + \
 | |
|                        [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
 | |
| 
 | |
|         begin += config[2]
 | |
|         self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin],
 | |
|                                       'W' if not i % 2 else 'SW', input_resolution // 8)
 | |
|                        for i in range(config[3])]
 | |
| 
 | |
|         begin += config[3]
 | |
|         self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \
 | |
|                      [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
 | |
|                                      'W' if not i % 2 else 'SW', input_resolution // 4)
 | |
|                       for i in range(config[4])]
 | |
| 
 | |
|         begin += config[4]
 | |
|         self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \
 | |
|                      [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
 | |
|                                      'W' if not i % 2 else 'SW', input_resolution // 2)
 | |
|                       for i in range(config[5])]
 | |
| 
 | |
|         begin += config[5]
 | |
|         self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \
 | |
|                      [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
 | |
|                                      'W' if not i % 2 else 'SW', input_resolution)
 | |
|                       for i in range(config[6])]
 | |
| 
 | |
|         self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
 | |
| 
 | |
|         self.m_head = nn.Sequential(*self.m_head)
 | |
|         self.m_down1 = nn.Sequential(*self.m_down1)
 | |
|         self.m_down2 = nn.Sequential(*self.m_down2)
 | |
|         self.m_down3 = nn.Sequential(*self.m_down3)
 | |
|         self.m_body = nn.Sequential(*self.m_body)
 | |
|         self.m_up3 = nn.Sequential(*self.m_up3)
 | |
|         self.m_up2 = nn.Sequential(*self.m_up2)
 | |
|         self.m_up1 = nn.Sequential(*self.m_up1)
 | |
|         self.m_tail = nn.Sequential(*self.m_tail)
 | |
|         # self.apply(self._init_weights)
 | |
| 
 | |
|     def forward(self, x0):
 | |
| 
 | |
|         h, w = x0.size()[-2:]
 | |
|         paddingBottom = int(np.ceil(h / 64) * 64 - h)
 | |
|         paddingRight = int(np.ceil(w / 64) * 64 - w)
 | |
|         x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
 | |
| 
 | |
|         x1 = self.m_head(x0)
 | |
|         x2 = self.m_down1(x1)
 | |
|         x3 = self.m_down2(x2)
 | |
|         x4 = self.m_down3(x3)
 | |
|         x = self.m_body(x4)
 | |
|         x = self.m_up3(x + x4)
 | |
|         x = self.m_up2(x + x3)
 | |
|         x = self.m_up1(x + x2)
 | |
|         x = self.m_tail(x + x1)
 | |
| 
 | |
|         x = x[..., :h, :w]
 | |
| 
 | |
|         return x
 | |
| 
 | |
|     def _init_weights(self, m):
 | |
|         if isinstance(m, nn.Linear):
 | |
|             trunc_normal_(m.weight, std=.02)
 | |
|             if m.bias is not None:
 | |
|                 nn.init.constant_(m.bias, 0)
 | |
|         elif isinstance(m, nn.LayerNorm):
 | |
|             nn.init.constant_(m.bias, 0)
 | |
|             nn.init.constant_(m.weight, 1.0) |