mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			217 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from collections import namedtuple
 | |
| 
 | |
| import numpy as np
 | |
| from tqdm import trange
 | |
| 
 | |
| import modules.scripts as scripts
 | |
| import gradio as gr
 | |
| 
 | |
| from modules import processing, shared, sd_samplers, prompt_parser
 | |
| from modules.processing import Processed
 | |
| from modules.shared import opts, cmd_opts, state
 | |
| 
 | |
| import torch
 | |
| import k_diffusion as K
 | |
| 
 | |
| from PIL import Image
 | |
| from torch import autocast
 | |
| from einops import rearrange, repeat
 | |
| 
 | |
| 
 | |
| def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
 | |
|     x = p.init_latent
 | |
| 
 | |
|     s_in = x.new_ones([x.shape[0]])
 | |
|     dnw = K.external.CompVisDenoiser(shared.sd_model)
 | |
|     sigmas = dnw.get_sigmas(steps).flip(0)
 | |
| 
 | |
|     shared.state.sampling_steps = steps
 | |
| 
 | |
|     for i in trange(1, len(sigmas)):
 | |
|         shared.state.sampling_step += 1
 | |
| 
 | |
|         x_in = torch.cat([x] * 2)
 | |
|         sigma_in = torch.cat([sigmas[i] * s_in] * 2)
 | |
|         cond_in = torch.cat([uncond, cond])
 | |
| 
 | |
|         image_conditioning = torch.cat([p.image_conditioning] * 2)
 | |
|         cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
 | |
| 
 | |
|         c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
 | |
|         t = dnw.sigma_to_t(sigma_in)
 | |
| 
 | |
|         eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
 | |
|         denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
 | |
| 
 | |
|         denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
 | |
| 
 | |
|         d = (x - denoised) / sigmas[i]
 | |
|         dt = sigmas[i] - sigmas[i - 1]
 | |
| 
 | |
|         x = x + d * dt
 | |
| 
 | |
|         sd_samplers.store_latent(x)
 | |
| 
 | |
|         # This shouldn't be necessary, but solved some VRAM issues
 | |
|         del x_in, sigma_in, cond_in, c_out, c_in, t,
 | |
|         del eps, denoised_uncond, denoised_cond, denoised, d, dt
 | |
| 
 | |
|     shared.state.nextjob()
 | |
| 
 | |
|     return x / x.std()
 | |
| 
 | |
| 
 | |
| Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])
 | |
| 
 | |
| 
 | |
| # Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
 | |
| def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
 | |
|     x = p.init_latent
 | |
| 
 | |
|     s_in = x.new_ones([x.shape[0]])
 | |
|     dnw = K.external.CompVisDenoiser(shared.sd_model)
 | |
|     sigmas = dnw.get_sigmas(steps).flip(0)
 | |
| 
 | |
|     shared.state.sampling_steps = steps
 | |
| 
 | |
|     for i in trange(1, len(sigmas)):
 | |
|         shared.state.sampling_step += 1
 | |
| 
 | |
|         x_in = torch.cat([x] * 2)
 | |
|         sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
 | |
|         cond_in = torch.cat([uncond, cond])
 | |
| 
 | |
|         image_conditioning = torch.cat([p.image_conditioning] * 2)
 | |
|         cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}
 | |
| 
 | |
|         c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)]
 | |
| 
 | |
|         if i == 1:
 | |
|             t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
 | |
|         else:
 | |
|             t = dnw.sigma_to_t(sigma_in)
 | |
| 
 | |
|         eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
 | |
|         denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)
 | |
| 
 | |
|         denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale
 | |
| 
 | |
|         if i == 1:
 | |
|             d = (x - denoised) / (2 * sigmas[i])
 | |
|         else:
 | |
|             d = (x - denoised) / sigmas[i - 1]
 | |
| 
 | |
|         dt = sigmas[i] - sigmas[i - 1]
 | |
|         x = x + d * dt
 | |
| 
 | |
|         sd_samplers.store_latent(x)
 | |
| 
 | |
|         # This shouldn't be necessary, but solved some VRAM issues
 | |
|         del x_in, sigma_in, cond_in, c_out, c_in, t,
 | |
|         del eps, denoised_uncond, denoised_cond, denoised, d, dt
 | |
| 
 | |
|     shared.state.nextjob()
 | |
| 
 | |
|     return x / sigmas[-1]
 | |
| 
 | |
| 
 | |
| class Script(scripts.Script):
 | |
|     def __init__(self):
 | |
|         self.cache = None
 | |
| 
 | |
|     def title(self):
 | |
|         return "img2img alternative test"
 | |
| 
 | |
|     def show(self, is_img2img):
 | |
|         return is_img2img
 | |
| 
 | |
|     def ui(self, is_img2img):
 | |
|         info = gr.Markdown('''
 | |
|         * `CFG Scale` should be 2 or lower.
 | |
|         ''')
 | |
| 
 | |
|         override_sampler = gr.Checkbox(label="Override `Sampling method` to Euler?(this method is built for it)", value=True)
 | |
| 
 | |
|         override_prompt = gr.Checkbox(label="Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", value=True)
 | |
|         original_prompt = gr.Textbox(label="Original prompt", lines=1)
 | |
|         original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1)
 | |
| 
 | |
|         override_steps = gr.Checkbox(label="Override `Sampling Steps` to the same value as `Decode steps`?", value=True)
 | |
|         st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50)
 | |
| 
 | |
|         override_strength = gr.Checkbox(label="Override `Denoising strength` to 1?", value=True)
 | |
| 
 | |
|         cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0)
 | |
|         randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0)
 | |
|         sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False)
 | |
| 
 | |
|         return [
 | |
|             info, 
 | |
|             override_sampler,
 | |
|             override_prompt, original_prompt, original_negative_prompt, 
 | |
|             override_steps, st,
 | |
|             override_strength,
 | |
|             cfg, randomness, sigma_adjustment,
 | |
|         ]
 | |
| 
 | |
|     def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
 | |
|         # Override
 | |
|         if override_sampler:
 | |
|             p.sampler_name = "Euler"
 | |
|         if override_prompt:
 | |
|             p.prompt = original_prompt
 | |
|             p.negative_prompt = original_negative_prompt
 | |
|         if override_steps:
 | |
|             p.steps = st
 | |
|         if override_strength:
 | |
|             p.denoising_strength = 1.0
 | |
| 
 | |
|         def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
 | |
|             lat = (p.init_latent.cpu().numpy() * 10).astype(int)
 | |
| 
 | |
|             same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
 | |
|                                 and self.cache.original_prompt == original_prompt \
 | |
|                                 and self.cache.original_negative_prompt == original_negative_prompt \
 | |
|                                 and self.cache.sigma_adjustment == sigma_adjustment
 | |
|             same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100
 | |
| 
 | |
|             if same_everything:
 | |
|                 rec_noise = self.cache.noise
 | |
|             else:
 | |
|                 shared.state.job_count += 1
 | |
|                 cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
 | |
|                 uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
 | |
|                 if sigma_adjustment:
 | |
|                     rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
 | |
|                 else:
 | |
|                     rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
 | |
|                 self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)
 | |
| 
 | |
|             rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
 | |
|             
 | |
|             combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)
 | |
|             
 | |
|             sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)
 | |
| 
 | |
|             sigmas = sampler.model_wrap.get_sigmas(p.steps)
 | |
|             
 | |
|             noise_dt = combined_noise - (p.init_latent / sigmas[0])
 | |
|             
 | |
|             p.seed = p.seed + 1
 | |
|             
 | |
|             return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)
 | |
| 
 | |
|         p.sample = sample_extra
 | |
| 
 | |
|         p.extra_generation_params["Decode prompt"] = original_prompt
 | |
|         p.extra_generation_params["Decode negative prompt"] = original_negative_prompt
 | |
|         p.extra_generation_params["Decode CFG scale"] = cfg
 | |
|         p.extra_generation_params["Decode steps"] = st
 | |
|         p.extra_generation_params["Randomness"] = randomness
 | |
|         p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment
 | |
| 
 | |
|         processed = processing.process_images(p)
 | |
| 
 | |
|         return processed
 | |
| 
 | 
