mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-30 17:38:51 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			399 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			399 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from collections import namedtuple
 | |
| from copy import copy
 | |
| from itertools import permutations, chain
 | |
| import random
 | |
| import csv
 | |
| from io import StringIO
 | |
| from PIL import Image
 | |
| import numpy as np
 | |
| 
 | |
| import modules.scripts as scripts
 | |
| import gradio as gr
 | |
| 
 | |
| from modules import images
 | |
| from modules.hypernetworks import hypernetwork
 | |
| from modules.processing import process_images, Processed, get_correct_sampler, StableDiffusionProcessingTxt2Img
 | |
| from modules.shared import opts, cmd_opts, state
 | |
| import modules.shared as shared
 | |
| import modules.sd_samplers
 | |
| import modules.sd_models
 | |
| import re
 | |
| 
 | |
| 
 | |
| def apply_field(field):
 | |
|     def fun(p, x, xs):
 | |
|         setattr(p, field, x)
 | |
| 
 | |
|     return fun
 | |
| 
 | |
| 
 | |
| def apply_prompt(p, x, xs):
 | |
|     if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
 | |
|         raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
 | |
| 
 | |
|     p.prompt = p.prompt.replace(xs[0], x)
 | |
|     p.negative_prompt = p.negative_prompt.replace(xs[0], x)
 | |
| 
 | |
| 
 | |
| def apply_order(p, x, xs):
 | |
|     token_order = []
 | |
| 
 | |
|     # Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
 | |
|     for token in x:
 | |
|         token_order.append((p.prompt.find(token), token))
 | |
| 
 | |
|     token_order.sort(key=lambda t: t[0])
 | |
| 
 | |
|     prompt_parts = []
 | |
| 
 | |
|     # Split the prompt up, taking out the tokens
 | |
|     for _, token in token_order:
 | |
|         n = p.prompt.find(token)
 | |
|         prompt_parts.append(p.prompt[0:n])
 | |
|         p.prompt = p.prompt[n + len(token):]
 | |
| 
 | |
|     # Rebuild the prompt with the tokens in the order we want
 | |
|     prompt_tmp = ""
 | |
|     for idx, part in enumerate(prompt_parts):
 | |
|         prompt_tmp += part
 | |
|         prompt_tmp += x[idx]
 | |
|     p.prompt = prompt_tmp + p.prompt
 | |
|     
 | |
| 
 | |
| def build_samplers_dict(p):
 | |
|     samplers_dict = {}
 | |
|     for i, sampler in enumerate(get_correct_sampler(p)):
 | |
|         samplers_dict[sampler.name.lower()] = i
 | |
|         for alias in sampler.aliases:
 | |
|             samplers_dict[alias.lower()] = i
 | |
|     return samplers_dict
 | |
| 
 | |
| 
 | |
| def apply_sampler(p, x, xs):
 | |
|     sampler_index = build_samplers_dict(p).get(x.lower(), None)
 | |
|     if sampler_index is None:
 | |
|         raise RuntimeError(f"Unknown sampler: {x}")
 | |
| 
 | |
|     p.sampler_index = sampler_index
 | |
| 
 | |
| 
 | |
| def confirm_samplers(p, xs):
 | |
|     samplers_dict = build_samplers_dict(p)
 | |
|     for x in xs:
 | |
|         if x.lower() not in samplers_dict.keys():
 | |
|             raise RuntimeError(f"Unknown sampler: {x}")
 | |
| 
 | |
| 
 | |
| def apply_checkpoint(p, x, xs):
 | |
|     info = modules.sd_models.get_closet_checkpoint_match(x)
 | |
|     if info is None:
 | |
|         raise RuntimeError(f"Unknown checkpoint: {x}")
 | |
|     modules.sd_models.reload_model_weights(shared.sd_model, info)
 | |
|     p.sd_model = shared.sd_model
 | |
| 
 | |
| 
 | |
| def confirm_checkpoints(p, xs):
 | |
|     for x in xs:
 | |
|         if modules.sd_models.get_closet_checkpoint_match(x) is None:
 | |
|             raise RuntimeError(f"Unknown checkpoint: {x}")
 | |
| 
 | |
| 
 | |
| def apply_hypernetwork(p, x, xs):
 | |
|     if x.lower() in ["", "none"]:
 | |
|         name = None
 | |
|     else:
 | |
|         name = hypernetwork.find_closest_hypernetwork_name(x)
 | |
|         if not name:
 | |
|             raise RuntimeError(f"Unknown hypernetwork: {x}")
 | |
|     hypernetwork.load_hypernetwork(name)
 | |
| 
 | |
| 
 | |
| def apply_hypernetwork_strength(p, x, xs):
 | |
|     hypernetwork.apply_strength(x)
 | |
| 
 | |
| 
 | |
| def confirm_hypernetworks(p, xs):
 | |
|     for x in xs:
 | |
|         if x.lower() in ["", "none"]:
 | |
|             continue
 | |
|         if not hypernetwork.find_closest_hypernetwork_name(x):
 | |
|             raise RuntimeError(f"Unknown hypernetwork: {x}")
 | |
| 
 | |
| 
 | |
| def apply_clip_skip(p, x, xs):
 | |
|     opts.data["CLIP_stop_at_last_layers"] = x
 | |
| 
 | |
| 
 | |
| def format_value_add_label(p, opt, x):
 | |
|     if type(x) == float:
 | |
|         x = round(x, 8)
 | |
| 
 | |
|     return f"{opt.label}: {x}"
 | |
| 
 | |
| 
 | |
| def format_value(p, opt, x):
 | |
|     if type(x) == float:
 | |
|         x = round(x, 8)
 | |
|     return x
 | |
| 
 | |
| 
 | |
| def format_value_join_list(p, opt, x):
 | |
|     return ", ".join(x)
 | |
| 
 | |
| 
 | |
| def do_nothing(p, x, xs):
 | |
|     pass
 | |
| 
 | |
| 
 | |
| def format_nothing(p, opt, x):
 | |
|     return ""
 | |
| 
 | |
| 
 | |
| def str_permutations(x):
 | |
|     """dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
 | |
|     return x
 | |
| 
 | |
| AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value", "confirm"])
 | |
| AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value", "confirm"])
 | |
| 
 | |
| 
 | |
| axis_options = [
 | |
|     AxisOption("Nothing", str, do_nothing, format_nothing, None),
 | |
|     AxisOption("Seed", int, apply_field("seed"), format_value_add_label, None),
 | |
|     AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label, None),
 | |
|     AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label, None),
 | |
|     AxisOption("Steps", int, apply_field("steps"), format_value_add_label, None),
 | |
|     AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label, None),
 | |
|     AxisOption("Prompt S/R", str, apply_prompt, format_value, None),
 | |
|     AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list, None),
 | |
|     AxisOption("Sampler", str, apply_sampler, format_value, confirm_samplers),
 | |
|     AxisOption("Checkpoint name", str, apply_checkpoint, format_value, confirm_checkpoints),
 | |
|     AxisOption("Hypernetwork", str, apply_hypernetwork, format_value, confirm_hypernetworks),
 | |
|     AxisOption("Hypernet str.", float, apply_hypernetwork_strength, format_value_add_label, None),
 | |
|     AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label, None),
 | |
|     AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label, None),
 | |
|     AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label, None),
 | |
|     AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label, None),
 | |
|     AxisOption("Eta", float, apply_field("eta"), format_value_add_label, None),
 | |
|     AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label, None),
 | |
|     AxisOption("Denoising", float, apply_field("denoising_strength"), format_value_add_label, None),
 | |
|     AxisOption("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight"), format_value_add_label, None),
 | |
| ]
 | |
| 
 | |
| 
 | |
| def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_images):
 | |
|     ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
 | |
|     hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
 | |
| 
 | |
|     # Temporary list of all the images that are generated to be populated into the grid.
 | |
|     # Will be filled with empty images for any individual step that fails to process properly
 | |
|     image_cache = []
 | |
| 
 | |
|     processed_result = None
 | |
|     cell_mode = "P"
 | |
|     cell_size = (1,1)
 | |
| 
 | |
|     state.job_count = len(xs) * len(ys) * p.n_iter
 | |
| 
 | |
|     for iy, y in enumerate(ys):
 | |
|         for ix, x in enumerate(xs):
 | |
|             state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
 | |
| 
 | |
|             processed:Processed = cell(x, y)
 | |
|             try:
 | |
|                 # this dereference will throw an exception if the image was not processed
 | |
|                 # (this happens in cases such as if the user stops the process from the UI)
 | |
|                 processed_image = processed.images[0]
 | |
|                 
 | |
|                 if processed_result is None:
 | |
|                     # Use our first valid processed result as a template container to hold our full results
 | |
|                     processed_result = copy(processed)
 | |
|                     cell_mode = processed_image.mode
 | |
|                     cell_size = processed_image.size
 | |
|                     processed_result.images = [Image.new(cell_mode, cell_size)]
 | |
| 
 | |
|                 image_cache.append(processed_image)
 | |
|                 if include_lone_images:
 | |
|                     processed_result.images.append(processed_image)
 | |
|                     processed_result.all_prompts.append(processed.prompt)
 | |
|                     processed_result.all_seeds.append(processed.seed)
 | |
|                     processed_result.infotexts.append(processed.infotexts[0])
 | |
|             except:
 | |
|                 image_cache.append(Image.new(cell_mode, cell_size))
 | |
| 
 | |
|     if not processed_result:
 | |
|         print("Unexpected error: draw_xy_grid failed to return even a single processed image")
 | |
|         return Processed()
 | |
| 
 | |
|     grid = images.image_grid(image_cache, rows=len(ys))
 | |
|     if draw_legend:
 | |
|         grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
 | |
| 
 | |
|     processed_result.images[0] = grid
 | |
| 
 | |
|     return processed_result
 | |
| 
 | |
| 
 | |
| class SharedSettingsStackHelper(object):
 | |
|     def __enter__(self):
 | |
|         self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
 | |
|         self.hypernetwork = opts.sd_hypernetwork
 | |
|         self.model = shared.sd_model
 | |
|   
 | |
|     def __exit__(self, exc_type, exc_value, tb):
 | |
|         modules.sd_models.reload_model_weights(self.model)
 | |
| 
 | |
|         hypernetwork.load_hypernetwork(self.hypernetwork)
 | |
|         hypernetwork.apply_strength()
 | |
| 
 | |
|         opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
 | |
| 
 | |
| 
 | |
| re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
 | |
| re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
 | |
| 
 | |
| re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
 | |
| re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
 | |
| 
 | |
| class Script(scripts.Script):
 | |
|     def title(self):
 | |
|         return "X/Y plot"
 | |
| 
 | |
|     def ui(self, is_img2img):
 | |
|         current_axis_options = [x for x in axis_options if type(x) == AxisOption or type(x) == AxisOptionImg2Img and is_img2img]
 | |
| 
 | |
|         with gr.Row():
 | |
|             x_type = gr.Dropdown(label="X type", choices=[x.label for x in current_axis_options], value=current_axis_options[1].label, visible=False, type="index", elem_id="x_type")
 | |
|             x_values = gr.Textbox(label="X values", visible=False, lines=1)
 | |
| 
 | |
|         with gr.Row():
 | |
|             y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[0].label, visible=False, type="index", elem_id="y_type")
 | |
|             y_values = gr.Textbox(label="Y values", visible=False, lines=1)
 | |
|         
 | |
|         draw_legend = gr.Checkbox(label='Draw legend', value=True)
 | |
|         include_lone_images = gr.Checkbox(label='Include Separate Images', value=False)
 | |
|         no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
 | |
| 
 | |
|         return [x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds]
 | |
| 
 | |
|     def run(self, p, x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds):
 | |
|         if not no_fixed_seeds:
 | |
|             modules.processing.fix_seed(p)
 | |
| 
 | |
|         if not opts.return_grid:
 | |
|             p.batch_size = 1
 | |
| 
 | |
|         def process_axis(opt, vals):
 | |
|             if opt.label == 'Nothing':
 | |
|                 return [0]
 | |
| 
 | |
|             valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals)))]
 | |
| 
 | |
|             if opt.type == int:
 | |
|                 valslist_ext = []
 | |
| 
 | |
|                 for val in valslist:
 | |
|                     m = re_range.fullmatch(val)
 | |
|                     mc = re_range_count.fullmatch(val)
 | |
|                     if m is not None:
 | |
|                         start = int(m.group(1))
 | |
|                         end = int(m.group(2))+1
 | |
|                         step = int(m.group(3)) if m.group(3) is not None else 1
 | |
| 
 | |
|                         valslist_ext += list(range(start, end, step))
 | |
|                     elif mc is not None:
 | |
|                         start = int(mc.group(1))
 | |
|                         end   = int(mc.group(2))
 | |
|                         num   = int(mc.group(3)) if mc.group(3) is not None else 1
 | |
|                         
 | |
|                         valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
 | |
|                     else:
 | |
|                         valslist_ext.append(val)
 | |
| 
 | |
|                 valslist = valslist_ext
 | |
|             elif opt.type == float:
 | |
|                 valslist_ext = []
 | |
| 
 | |
|                 for val in valslist:
 | |
|                     m = re_range_float.fullmatch(val)
 | |
|                     mc = re_range_count_float.fullmatch(val)
 | |
|                     if m is not None:
 | |
|                         start = float(m.group(1))
 | |
|                         end = float(m.group(2))
 | |
|                         step = float(m.group(3)) if m.group(3) is not None else 1
 | |
| 
 | |
|                         valslist_ext += np.arange(start, end + step, step).tolist()
 | |
|                     elif mc is not None:
 | |
|                         start = float(mc.group(1))
 | |
|                         end   = float(mc.group(2))
 | |
|                         num   = int(mc.group(3)) if mc.group(3) is not None else 1
 | |
|                         
 | |
|                         valslist_ext += np.linspace(start=start, stop=end, num=num).tolist()
 | |
|                     else:
 | |
|                         valslist_ext.append(val)
 | |
| 
 | |
|                 valslist = valslist_ext
 | |
|             elif opt.type == str_permutations:
 | |
|                 valslist = list(permutations(valslist))
 | |
| 
 | |
|             valslist = [opt.type(x) for x in valslist]
 | |
| 
 | |
|             # Confirm options are valid before starting
 | |
|             if opt.confirm:
 | |
|                 opt.confirm(p, valslist)
 | |
| 
 | |
|             return valslist
 | |
| 
 | |
|         x_opt = axis_options[x_type]
 | |
|         xs = process_axis(x_opt, x_values)
 | |
| 
 | |
|         y_opt = axis_options[y_type]
 | |
|         ys = process_axis(y_opt, y_values)
 | |
| 
 | |
|         def fix_axis_seeds(axis_opt, axis_list):
 | |
|             if axis_opt.label in ['Seed','Var. seed']:
 | |
|                 return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
 | |
|             else:
 | |
|                 return axis_list
 | |
| 
 | |
|         if not no_fixed_seeds:
 | |
|             xs = fix_axis_seeds(x_opt, xs)
 | |
|             ys = fix_axis_seeds(y_opt, ys)
 | |
| 
 | |
|         if x_opt.label == 'Steps':
 | |
|             total_steps = sum(xs) * len(ys)
 | |
|         elif y_opt.label == 'Steps':
 | |
|             total_steps = sum(ys) * len(xs)
 | |
|         else:
 | |
|             total_steps = p.steps * len(xs) * len(ys)
 | |
| 
 | |
|         if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
 | |
|             total_steps *= 2
 | |
| 
 | |
|         print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})")
 | |
|         shared.total_tqdm.updateTotal(total_steps * p.n_iter)
 | |
| 
 | |
|         def cell(x, y):
 | |
|             pc = copy(p)
 | |
|             x_opt.apply(pc, x, xs)
 | |
|             y_opt.apply(pc, y, ys)
 | |
| 
 | |
|             return process_images(pc)
 | |
| 
 | |
|         with SharedSettingsStackHelper():
 | |
|             processed = draw_xy_grid(
 | |
|                 p,
 | |
|                 xs=xs,
 | |
|                 ys=ys,
 | |
|                 x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
 | |
|                 y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
 | |
|                 cell=cell,
 | |
|                 draw_legend=draw_legend,
 | |
|                 include_lone_images=include_lone_images
 | |
|             )
 | |
| 
 | |
|         if opts.grid_save:
 | |
|             images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p)
 | |
| 
 | |
|         return processed
 | 
