mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 12:03:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			43 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			43 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import html
 | 
						|
 | 
						|
import gradio as gr
 | 
						|
 | 
						|
import modules.textual_inversion.textual_inversion
 | 
						|
import modules.textual_inversion.preprocess
 | 
						|
from modules import sd_hijack, shared
 | 
						|
 | 
						|
 | 
						|
def create_embedding(name, initialization_text, nvpt):
 | 
						|
    filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, init_text=initialization_text)
 | 
						|
 | 
						|
    sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
 | 
						|
 | 
						|
    return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
 | 
						|
 | 
						|
 | 
						|
def preprocess(*args):
 | 
						|
    modules.textual_inversion.preprocess.preprocess(*args)
 | 
						|
 | 
						|
    return "Preprocessing finished.", ""
 | 
						|
 | 
						|
 | 
						|
def train_embedding(*args):
 | 
						|
 | 
						|
    assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
 | 
						|
 | 
						|
    try:
 | 
						|
        sd_hijack.undo_optimizations()
 | 
						|
 | 
						|
        embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args)
 | 
						|
 | 
						|
        res = f"""
 | 
						|
Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps.
 | 
						|
Embedding saved to {html.escape(filename)}
 | 
						|
"""
 | 
						|
        return res, ""
 | 
						|
    except Exception:
 | 
						|
        raise
 | 
						|
    finally:
 | 
						|
        sd_hijack.apply_optimizations()
 | 
						|
 |