mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 03:55:05 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			230 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			230 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import sys
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
import modules.esrgan_model_arch as arch
 | 
						|
from modules import modelloader, images, devices
 | 
						|
from modules.shared import opts
 | 
						|
from modules.upscaler import Upscaler, UpscalerData
 | 
						|
 | 
						|
 | 
						|
def mod2normal(state_dict):
 | 
						|
    # this code is copied from https://github.com/victorca25/iNNfer
 | 
						|
    if 'conv_first.weight' in state_dict:
 | 
						|
        crt_net = {}
 | 
						|
        items = list(state_dict)
 | 
						|
 | 
						|
        crt_net['model.0.weight'] = state_dict['conv_first.weight']
 | 
						|
        crt_net['model.0.bias'] = state_dict['conv_first.bias']
 | 
						|
 | 
						|
        for k in items.copy():
 | 
						|
            if 'RDB' in k:
 | 
						|
                ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
 | 
						|
                if '.weight' in k:
 | 
						|
                    ori_k = ori_k.replace('.weight', '.0.weight')
 | 
						|
                elif '.bias' in k:
 | 
						|
                    ori_k = ori_k.replace('.bias', '.0.bias')
 | 
						|
                crt_net[ori_k] = state_dict[k]
 | 
						|
                items.remove(k)
 | 
						|
 | 
						|
        crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
 | 
						|
        crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
 | 
						|
        crt_net['model.3.weight'] = state_dict['upconv1.weight']
 | 
						|
        crt_net['model.3.bias'] = state_dict['upconv1.bias']
 | 
						|
        crt_net['model.6.weight'] = state_dict['upconv2.weight']
 | 
						|
        crt_net['model.6.bias'] = state_dict['upconv2.bias']
 | 
						|
        crt_net['model.8.weight'] = state_dict['HRconv.weight']
 | 
						|
        crt_net['model.8.bias'] = state_dict['HRconv.bias']
 | 
						|
        crt_net['model.10.weight'] = state_dict['conv_last.weight']
 | 
						|
        crt_net['model.10.bias'] = state_dict['conv_last.bias']
 | 
						|
        state_dict = crt_net
 | 
						|
    return state_dict
 | 
						|
 | 
						|
 | 
						|
def resrgan2normal(state_dict, nb=23):
 | 
						|
    # this code is copied from https://github.com/victorca25/iNNfer
 | 
						|
    if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
 | 
						|
        re8x = 0
 | 
						|
        crt_net = {}
 | 
						|
        items = list(state_dict)
 | 
						|
 | 
						|
        crt_net['model.0.weight'] = state_dict['conv_first.weight']
 | 
						|
        crt_net['model.0.bias'] = state_dict['conv_first.bias']
 | 
						|
 | 
						|
        for k in items.copy():
 | 
						|
            if "rdb" in k:
 | 
						|
                ori_k = k.replace('body.', 'model.1.sub.')
 | 
						|
                ori_k = ori_k.replace('.rdb', '.RDB')
 | 
						|
                if '.weight' in k:
 | 
						|
                    ori_k = ori_k.replace('.weight', '.0.weight')
 | 
						|
                elif '.bias' in k:
 | 
						|
                    ori_k = ori_k.replace('.bias', '.0.bias')
 | 
						|
                crt_net[ori_k] = state_dict[k]
 | 
						|
                items.remove(k)
 | 
						|
 | 
						|
        crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight']
 | 
						|
        crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias']
 | 
						|
        crt_net['model.3.weight'] = state_dict['conv_up1.weight']
 | 
						|
        crt_net['model.3.bias'] = state_dict['conv_up1.bias']
 | 
						|
        crt_net['model.6.weight'] = state_dict['conv_up2.weight']
 | 
						|
        crt_net['model.6.bias'] = state_dict['conv_up2.bias']
 | 
						|
 | 
						|
        if 'conv_up3.weight' in state_dict:
 | 
						|
            # modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
 | 
						|
            re8x = 3
 | 
						|
            crt_net['model.9.weight'] = state_dict['conv_up3.weight']
 | 
						|
            crt_net['model.9.bias'] = state_dict['conv_up3.bias']
 | 
						|
 | 
						|
        crt_net[f'model.{8+re8x}.weight'] = state_dict['conv_hr.weight']
 | 
						|
        crt_net[f'model.{8+re8x}.bias'] = state_dict['conv_hr.bias']
 | 
						|
        crt_net[f'model.{10+re8x}.weight'] = state_dict['conv_last.weight']
 | 
						|
        crt_net[f'model.{10+re8x}.bias'] = state_dict['conv_last.bias']
 | 
						|
 | 
						|
        state_dict = crt_net
 | 
						|
    return state_dict
 | 
						|
 | 
						|
 | 
						|
def infer_params(state_dict):
 | 
						|
    # this code is copied from https://github.com/victorca25/iNNfer
 | 
						|
    scale2x = 0
 | 
						|
    scalemin = 6
 | 
						|
    n_uplayer = 0
 | 
						|
    plus = False
 | 
						|
 | 
						|
    for block in list(state_dict):
 | 
						|
        parts = block.split(".")
 | 
						|
        n_parts = len(parts)
 | 
						|
        if n_parts == 5 and parts[2] == "sub":
 | 
						|
            nb = int(parts[3])
 | 
						|
        elif n_parts == 3:
 | 
						|
            part_num = int(parts[1])
 | 
						|
            if (part_num > scalemin
 | 
						|
                and parts[0] == "model"
 | 
						|
                and parts[2] == "weight"):
 | 
						|
                scale2x += 1
 | 
						|
            if part_num > n_uplayer:
 | 
						|
                n_uplayer = part_num
 | 
						|
                out_nc = state_dict[block].shape[0]
 | 
						|
        if not plus and "conv1x1" in block:
 | 
						|
            plus = True
 | 
						|
 | 
						|
    nf = state_dict["model.0.weight"].shape[0]
 | 
						|
    in_nc = state_dict["model.0.weight"].shape[1]
 | 
						|
    out_nc = out_nc
 | 
						|
    scale = 2 ** scale2x
 | 
						|
 | 
						|
    return in_nc, out_nc, nf, nb, plus, scale
 | 
						|
 | 
						|
 | 
						|
class UpscalerESRGAN(Upscaler):
 | 
						|
    def __init__(self, dirname):
 | 
						|
        self.name = "ESRGAN"
 | 
						|
        self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
 | 
						|
        self.model_name = "ESRGAN_4x"
 | 
						|
        self.scalers = []
 | 
						|
        self.user_path = dirname
 | 
						|
        super().__init__()
 | 
						|
        model_paths = self.find_models(ext_filter=[".pt", ".pth"])
 | 
						|
        scalers = []
 | 
						|
        if len(model_paths) == 0:
 | 
						|
            scaler_data = UpscalerData(self.model_name, self.model_url, self, 4)
 | 
						|
            scalers.append(scaler_data)
 | 
						|
        for file in model_paths:
 | 
						|
            if file.startswith("http"):
 | 
						|
                name = self.model_name
 | 
						|
            else:
 | 
						|
                name = modelloader.friendly_name(file)
 | 
						|
 | 
						|
            scaler_data = UpscalerData(name, file, self, 4)
 | 
						|
            self.scalers.append(scaler_data)
 | 
						|
 | 
						|
    def do_upscale(self, img, selected_model):
 | 
						|
        try:
 | 
						|
            model = self.load_model(selected_model)
 | 
						|
        except Exception as e:
 | 
						|
            print(f"Unable to load ESRGAN model {selected_model}: {e}", file=sys.stderr)
 | 
						|
            return img
 | 
						|
        model.to(devices.device_esrgan)
 | 
						|
        img = esrgan_upscale(model, img)
 | 
						|
        return img
 | 
						|
 | 
						|
    def load_model(self, path: str):
 | 
						|
        if path.startswith("http"):
 | 
						|
            # TODO: this doesn't use `path` at all?
 | 
						|
            filename = modelloader.load_file_from_url(
 | 
						|
                url=self.model_url,
 | 
						|
                model_dir=self.model_download_path,
 | 
						|
                file_name=f"{self.model_name}.pth",
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            filename = path
 | 
						|
 | 
						|
        state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
 | 
						|
 | 
						|
        if "params_ema" in state_dict:
 | 
						|
            state_dict = state_dict["params_ema"]
 | 
						|
        elif "params" in state_dict:
 | 
						|
            state_dict = state_dict["params"]
 | 
						|
            num_conv = 16 if "realesr-animevideov3" in filename else 32
 | 
						|
            model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu')
 | 
						|
            model.load_state_dict(state_dict)
 | 
						|
            model.eval()
 | 
						|
            return model
 | 
						|
 | 
						|
        if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
 | 
						|
            nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
 | 
						|
            state_dict = resrgan2normal(state_dict, nb)
 | 
						|
        elif "conv_first.weight" in state_dict:
 | 
						|
            state_dict = mod2normal(state_dict)
 | 
						|
        elif "model.0.weight" not in state_dict:
 | 
						|
            raise Exception("The file is not a recognized ESRGAN model.")
 | 
						|
 | 
						|
        in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
 | 
						|
 | 
						|
        model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
 | 
						|
        model.load_state_dict(state_dict)
 | 
						|
        model.eval()
 | 
						|
 | 
						|
        return model
 | 
						|
 | 
						|
 | 
						|
def upscale_without_tiling(model, img):
 | 
						|
    img = np.array(img)
 | 
						|
    img = img[:, :, ::-1]
 | 
						|
    img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
 | 
						|
    img = torch.from_numpy(img).float()
 | 
						|
    img = img.unsqueeze(0).to(devices.device_esrgan)
 | 
						|
    with torch.no_grad():
 | 
						|
        output = model(img)
 | 
						|
    output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
 | 
						|
    output = 255. * np.moveaxis(output, 0, 2)
 | 
						|
    output = output.astype(np.uint8)
 | 
						|
    output = output[:, :, ::-1]
 | 
						|
    return Image.fromarray(output, 'RGB')
 | 
						|
 | 
						|
 | 
						|
def esrgan_upscale(model, img):
 | 
						|
    if opts.ESRGAN_tile == 0:
 | 
						|
        return upscale_without_tiling(model, img)
 | 
						|
 | 
						|
    grid = images.split_grid(img, opts.ESRGAN_tile, opts.ESRGAN_tile, opts.ESRGAN_tile_overlap)
 | 
						|
    newtiles = []
 | 
						|
    scale_factor = 1
 | 
						|
 | 
						|
    for y, h, row in grid.tiles:
 | 
						|
        newrow = []
 | 
						|
        for tiledata in row:
 | 
						|
            x, w, tile = tiledata
 | 
						|
 | 
						|
            output = upscale_without_tiling(model, tile)
 | 
						|
            scale_factor = output.width // tile.width
 | 
						|
 | 
						|
            newrow.append([x * scale_factor, w * scale_factor, output])
 | 
						|
        newtiles.append([y * scale_factor, h * scale_factor, newrow])
 | 
						|
 | 
						|
    newgrid = images.Grid(newtiles, grid.tile_w * scale_factor, grid.tile_h * scale_factor, grid.image_w * scale_factor, grid.image_h * scale_factor, grid.overlap * scale_factor)
 | 
						|
    output = images.combine_grid(newgrid)
 | 
						|
    return output
 |