mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os.path
 | |
| from concurrent.futures import ProcessPoolExecutor
 | |
| from multiprocessing import get_context
 | |
| 
 | |
| 
 | |
| def _load_tf_and_return_tags(pil_image, threshold):
 | |
|     import deepdanbooru as dd
 | |
|     import tensorflow as tf
 | |
|     import numpy as np
 | |
| 
 | |
|     this_folder = os.path.dirname(__file__)
 | |
|     model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
 | |
|     if not os.path.exists(os.path.join(model_path, 'project.json')):
 | |
|         # there is no point importing these every time
 | |
|         import zipfile
 | |
|         from basicsr.utils.download_util import load_file_from_url
 | |
|         load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
 | |
|                            model_path)
 | |
|         with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
 | |
|             zip_ref.extractall(model_path)
 | |
|         os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
 | |
| 
 | |
|     tags = dd.project.load_tags_from_project(model_path)
 | |
|     model = dd.project.load_model_from_project(
 | |
|         model_path, compile_model=True
 | |
|     )
 | |
| 
 | |
|     width = model.input_shape[2]
 | |
|     height = model.input_shape[1]
 | |
|     image = np.array(pil_image)
 | |
|     image = tf.image.resize(
 | |
|         image,
 | |
|         size=(height, width),
 | |
|         method=tf.image.ResizeMethod.AREA,
 | |
|         preserve_aspect_ratio=True,
 | |
|     )
 | |
|     image = image.numpy()  # EagerTensor to np.array
 | |
|     image = dd.image.transform_and_pad_image(image, width, height)
 | |
|     image = image / 255.0
 | |
|     image_shape = image.shape
 | |
|     image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
 | |
| 
 | |
|     y = model.predict(image)[0]
 | |
| 
 | |
|     result_dict = {}
 | |
| 
 | |
|     for i, tag in enumerate(tags):
 | |
|         result_dict[tag] = y[i]
 | |
|     result_tags_out = []
 | |
|     result_tags_print = []
 | |
|     for tag in tags:
 | |
|         if result_dict[tag] >= threshold:
 | |
|             if tag.startswith("rating:"):
 | |
|                 continue
 | |
|             result_tags_out.append(tag)
 | |
|             result_tags_print.append(f'{result_dict[tag]} {tag}')
 | |
| 
 | |
|     print('\n'.join(sorted(result_tags_print, reverse=True)))
 | |
| 
 | |
|     return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
 | |
| 
 | |
| 
 | |
| def subprocess_init_no_cuda():
 | |
|     import os
 | |
|     os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
 | |
| 
 | |
| 
 | |
| def get_deepbooru_tags(pil_image, threshold=0.5):
 | |
|     context = get_context('spawn')
 | |
|     with ProcessPoolExecutor(initializer=subprocess_init_no_cuda, mp_context=context) as executor:
 | |
|         f = executor.submit(_load_tf_and_return_tags, pil_image, threshold, )
 | |
|         ret = f.result()  # will rethrow any exceptions
 | |
|     return ret | 
