mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 10:03:40 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			714 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			714 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import json
 | |
| import math
 | |
| import os
 | |
| import sys
 | |
| 
 | |
| import torch
 | |
| import numpy as np
 | |
| from PIL import Image, ImageFilter, ImageOps
 | |
| import random
 | |
| import cv2
 | |
| from skimage import exposure
 | |
| 
 | |
| import modules.sd_hijack
 | |
| from modules import devices, prompt_parser, masking, sd_samplers, lowvram
 | |
| from modules.sd_hijack import model_hijack
 | |
| from modules.shared import opts, cmd_opts, state
 | |
| import modules.shared as shared
 | |
| import modules.face_restoration
 | |
| import modules.images as images
 | |
| import modules.styles
 | |
| import logging
 | |
| 
 | |
| 
 | |
| # some of those options should not be changed at all because they would break the model, so I removed them from options.
 | |
| opt_C = 4
 | |
| opt_f = 8
 | |
| 
 | |
| 
 | |
| def setup_color_correction(image):
 | |
|     logging.info("Calibrating color correction.")
 | |
|     correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
 | |
|     return correction_target
 | |
| 
 | |
| 
 | |
| def apply_color_correction(correction, image):
 | |
|     logging.info("Applying color correction.")
 | |
|     image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
 | |
|         cv2.cvtColor(
 | |
|             np.asarray(image),
 | |
|             cv2.COLOR_RGB2LAB
 | |
|         ),
 | |
|         correction,
 | |
|         channel_axis=2
 | |
|     ), cv2.COLOR_LAB2RGB).astype("uint8"))
 | |
| 
 | |
|     return image
 | |
| 
 | |
| 
 | |
| def get_correct_sampler(p):
 | |
|     if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
 | |
|         return sd_samplers.samplers
 | |
|     elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
 | |
|         return sd_samplers.samplers_for_img2img
 | |
| 
 | |
| class StableDiffusionProcessing:
 | |
|     def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
 | |
|         self.sd_model = sd_model
 | |
|         self.outpath_samples: str = outpath_samples
 | |
|         self.outpath_grids: str = outpath_grids
 | |
|         self.prompt: str = prompt
 | |
|         self.prompt_for_display: str = None
 | |
|         self.negative_prompt: str = (negative_prompt or "")
 | |
|         self.styles: list = styles or []
 | |
|         self.seed: int = seed
 | |
|         self.subseed: int = subseed
 | |
|         self.subseed_strength: float = subseed_strength
 | |
|         self.seed_resize_from_h: int = seed_resize_from_h
 | |
|         self.seed_resize_from_w: int = seed_resize_from_w
 | |
|         self.sampler_index: int = sampler_index
 | |
|         self.batch_size: int = batch_size
 | |
|         self.n_iter: int = n_iter
 | |
|         self.steps: int = steps
 | |
|         self.cfg_scale: float = cfg_scale
 | |
|         self.width: int = width
 | |
|         self.height: int = height
 | |
|         self.restore_faces: bool = restore_faces
 | |
|         self.tiling: bool = tiling
 | |
|         self.do_not_save_samples: bool = do_not_save_samples
 | |
|         self.do_not_save_grid: bool = do_not_save_grid
 | |
|         self.extra_generation_params: dict = extra_generation_params or {}
 | |
|         self.overlay_images = overlay_images
 | |
|         self.eta = eta
 | |
|         self.paste_to = None
 | |
|         self.color_corrections = None
 | |
|         self.denoising_strength: float = 0
 | |
|         self.sampler_noise_scheduler_override = None
 | |
|         self.ddim_discretize = opts.ddim_discretize
 | |
|         self.s_churn = opts.s_churn
 | |
|         self.s_tmin = opts.s_tmin
 | |
|         self.s_tmax = float('inf')  # not representable as a standard ui option
 | |
|         self.s_noise = opts.s_noise
 | |
| 
 | |
|         if not seed_enable_extras:
 | |
|             self.subseed = -1
 | |
|             self.subseed_strength = 0
 | |
|             self.seed_resize_from_h = 0
 | |
|             self.seed_resize_from_w = 0
 | |
| 
 | |
|     def init(self, all_prompts, all_seeds, all_subseeds):
 | |
|         pass
 | |
| 
 | |
|     def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
 | |
|         raise NotImplementedError()
 | |
| 
 | |
| 
 | |
| class Processed:
 | |
|     def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
 | |
|         self.images = images_list
 | |
|         self.prompt = p.prompt
 | |
|         self.negative_prompt = p.negative_prompt
 | |
|         self.seed = seed
 | |
|         self.subseed = subseed
 | |
|         self.subseed_strength = p.subseed_strength
 | |
|         self.info = info
 | |
|         self.width = p.width
 | |
|         self.height = p.height
 | |
|         self.sampler_index = p.sampler_index
 | |
|         self.sampler = sd_samplers.samplers[p.sampler_index].name
 | |
|         self.cfg_scale = p.cfg_scale
 | |
|         self.steps = p.steps
 | |
|         self.batch_size = p.batch_size
 | |
|         self.restore_faces = p.restore_faces
 | |
|         self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
 | |
|         self.sd_model_hash = shared.sd_model.sd_model_hash
 | |
|         self.seed_resize_from_w = p.seed_resize_from_w
 | |
|         self.seed_resize_from_h = p.seed_resize_from_h
 | |
|         self.denoising_strength = getattr(p, 'denoising_strength', None)
 | |
|         self.extra_generation_params = p.extra_generation_params
 | |
|         self.index_of_first_image = index_of_first_image
 | |
|         self.styles = p.styles
 | |
|         self.job_timestamp = state.job_timestamp
 | |
|         self.clip_skip = opts.CLIP_stop_at_last_layers
 | |
| 
 | |
|         self.eta = p.eta
 | |
|         self.ddim_discretize = p.ddim_discretize
 | |
|         self.s_churn = p.s_churn
 | |
|         self.s_tmin = p.s_tmin
 | |
|         self.s_tmax = p.s_tmax
 | |
|         self.s_noise = p.s_noise
 | |
|         self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
 | |
|         self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
 | |
|         self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
 | |
|         self.seed = int(self.seed if type(self.seed) != list else self.seed[0])
 | |
|         self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
 | |
| 
 | |
|         self.all_prompts = all_prompts or [self.prompt]
 | |
|         self.all_seeds = all_seeds or [self.seed]
 | |
|         self.all_subseeds = all_subseeds or [self.subseed]
 | |
|         self.infotexts = infotexts or [info]
 | |
| 
 | |
|     def js(self):
 | |
|         obj = {
 | |
|             "prompt": self.prompt,
 | |
|             "all_prompts": self.all_prompts,
 | |
|             "negative_prompt": self.negative_prompt,
 | |
|             "seed": self.seed,
 | |
|             "all_seeds": self.all_seeds,
 | |
|             "subseed": self.subseed,
 | |
|             "all_subseeds": self.all_subseeds,
 | |
|             "subseed_strength": self.subseed_strength,
 | |
|             "width": self.width,
 | |
|             "height": self.height,
 | |
|             "sampler_index": self.sampler_index,
 | |
|             "sampler": self.sampler,
 | |
|             "cfg_scale": self.cfg_scale,
 | |
|             "steps": self.steps,
 | |
|             "batch_size": self.batch_size,
 | |
|             "restore_faces": self.restore_faces,
 | |
|             "face_restoration_model": self.face_restoration_model,
 | |
|             "sd_model_hash": self.sd_model_hash,
 | |
|             "seed_resize_from_w": self.seed_resize_from_w,
 | |
|             "seed_resize_from_h": self.seed_resize_from_h,
 | |
|             "denoising_strength": self.denoising_strength,
 | |
|             "extra_generation_params": self.extra_generation_params,
 | |
|             "index_of_first_image": self.index_of_first_image,
 | |
|             "infotexts": self.infotexts,
 | |
|             "styles": self.styles,
 | |
|             "job_timestamp": self.job_timestamp,
 | |
|             "clip_skip": self.clip_skip,
 | |
|         }
 | |
| 
 | |
|         return json.dumps(obj)
 | |
| 
 | |
|     def infotext(self,  p: StableDiffusionProcessing, index):
 | |
|         return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
 | |
| 
 | |
| 
 | |
| # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
 | |
| def slerp(val, low, high):
 | |
|     low_norm = low/torch.norm(low, dim=1, keepdim=True)
 | |
|     high_norm = high/torch.norm(high, dim=1, keepdim=True)
 | |
|     dot = (low_norm*high_norm).sum(1)
 | |
| 
 | |
|     if dot.mean() > 0.9995:
 | |
|         return low * val + high * (1 - val)
 | |
| 
 | |
|     omega = torch.acos(dot)
 | |
|     so = torch.sin(omega)
 | |
|     res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
 | |
|     return res
 | |
| 
 | |
| 
 | |
| def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
 | |
|     xs = []
 | |
| 
 | |
|     # if we have multiple seeds, this means we are working with batch size>1; this then
 | |
|     # enables the generation of additional tensors with noise that the sampler will use during its processing.
 | |
|     # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
 | |
|     # produce the same images as with two batches [100], [101].
 | |
|     if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds:
 | |
|         sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
 | |
|     else:
 | |
|         sampler_noises = None
 | |
| 
 | |
|     for i, seed in enumerate(seeds):
 | |
|         noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
 | |
| 
 | |
|         subnoise = None
 | |
|         if subseeds is not None:
 | |
|             subseed = 0 if i >= len(subseeds) else subseeds[i]
 | |
| 
 | |
|             subnoise = devices.randn(subseed, noise_shape)
 | |
| 
 | |
|         # randn results depend on device; gpu and cpu get different results for same seed;
 | |
|         # the way I see it, it's better to do this on CPU, so that everyone gets same result;
 | |
|         # but the original script had it like this, so I do not dare change it for now because
 | |
|         # it will break everyone's seeds.
 | |
|         noise = devices.randn(seed, noise_shape)
 | |
| 
 | |
|         if subnoise is not None:
 | |
|             noise = slerp(subseed_strength, noise, subnoise)
 | |
| 
 | |
|         if noise_shape != shape:
 | |
|             x = devices.randn(seed, shape)
 | |
|             dx = (shape[2] - noise_shape[2]) // 2
 | |
|             dy = (shape[1] - noise_shape[1]) // 2
 | |
|             w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
 | |
|             h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
 | |
|             tx = 0 if dx < 0 else dx
 | |
|             ty = 0 if dy < 0 else dy
 | |
|             dx = max(-dx, 0)
 | |
|             dy = max(-dy, 0)
 | |
| 
 | |
|             x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
 | |
|             noise = x
 | |
| 
 | |
|         if sampler_noises is not None:
 | |
|             cnt = p.sampler.number_of_needed_noises(p)
 | |
| 
 | |
|             for j in range(cnt):
 | |
|                 sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
 | |
| 
 | |
|         xs.append(noise)
 | |
| 
 | |
|     if sampler_noises is not None:
 | |
|         p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
 | |
| 
 | |
|     x = torch.stack(xs).to(shared.device)
 | |
|     return x
 | |
| 
 | |
| 
 | |
| def decode_first_stage(model, x):
 | |
|     with devices.autocast(disable=x.dtype == devices.dtype_vae):
 | |
|         x = model.decode_first_stage(x)
 | |
| 
 | |
|     return x
 | |
| 
 | |
| 
 | |
| def get_fixed_seed(seed):
 | |
|     if seed is None or seed == '' or seed == -1:
 | |
|         return int(random.randrange(4294967294))
 | |
| 
 | |
|     return seed
 | |
| 
 | |
| 
 | |
| def fix_seed(p):
 | |
|     p.seed = get_fixed_seed(p.seed)
 | |
|     p.subseed = get_fixed_seed(p.subseed)
 | |
| 
 | |
| 
 | |
| def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
 | |
|     index = position_in_batch + iteration * p.batch_size
 | |
| 
 | |
|     clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
 | |
| 
 | |
|     generation_params = {
 | |
|         "Steps": p.steps,
 | |
|         "Sampler": get_correct_sampler(p)[p.sampler_index].name,
 | |
|         "CFG scale": p.cfg_scale,
 | |
|         "Seed": all_seeds[index],
 | |
|         "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
 | |
|         "Size": f"{p.width}x{p.height}",
 | |
|         "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
 | |
|         "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
 | |
|         "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name.replace(',', '').replace(':', '')),
 | |
|         "Batch size": (None if p.batch_size < 2 else p.batch_size),
 | |
|         "Batch pos": (None if p.batch_size < 2 else position_in_batch),
 | |
|         "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
 | |
|         "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
 | |
|         "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
 | |
|         "Denoising strength": getattr(p, 'denoising_strength', None),
 | |
|         "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
 | |
|         "Clip skip": None if clip_skip <= 1 else clip_skip,
 | |
|     }
 | |
| 
 | |
|     generation_params.update(p.extra_generation_params)
 | |
| 
 | |
|     generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
 | |
| 
 | |
|     negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
 | |
| 
 | |
|     return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
 | |
| 
 | |
| 
 | |
| def process_images(p: StableDiffusionProcessing) -> Processed:
 | |
|     """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
 | |
| 
 | |
|     if type(p.prompt) == list:
 | |
|         assert(len(p.prompt) > 0)
 | |
|     else:
 | |
|         assert p.prompt is not None
 | |
| 
 | |
|     devices.torch_gc()
 | |
| 
 | |
|     seed = get_fixed_seed(p.seed)
 | |
|     subseed = get_fixed_seed(p.subseed)
 | |
| 
 | |
|     if p.outpath_samples is not None:
 | |
|         os.makedirs(p.outpath_samples, exist_ok=True)
 | |
| 
 | |
|     if p.outpath_grids is not None:
 | |
|         os.makedirs(p.outpath_grids, exist_ok=True)
 | |
| 
 | |
|     modules.sd_hijack.model_hijack.apply_circular(p.tiling)
 | |
|     modules.sd_hijack.model_hijack.clear_comments()
 | |
| 
 | |
|     comments = {}
 | |
| 
 | |
|     shared.prompt_styles.apply_styles(p)
 | |
| 
 | |
|     if type(p.prompt) == list:
 | |
|         all_prompts = p.prompt
 | |
|     else:
 | |
|         all_prompts = p.batch_size * p.n_iter * [p.prompt]
 | |
| 
 | |
|     if type(seed) == list:
 | |
|         all_seeds = seed
 | |
|     else:
 | |
|         all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
 | |
| 
 | |
|     if type(subseed) == list:
 | |
|         all_subseeds = subseed
 | |
|     else:
 | |
|         all_subseeds = [int(subseed) + x for x in range(len(all_prompts))]
 | |
| 
 | |
|     def infotext(iteration=0, position_in_batch=0):
 | |
|         return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
 | |
| 
 | |
|     if os.path.exists(cmd_opts.embeddings_dir):
 | |
|         model_hijack.embedding_db.load_textual_inversion_embeddings()
 | |
| 
 | |
|     infotexts = []
 | |
|     output_images = []
 | |
| 
 | |
|     with torch.no_grad(), p.sd_model.ema_scope():
 | |
|         with devices.autocast():
 | |
|             p.init(all_prompts, all_seeds, all_subseeds)
 | |
| 
 | |
|         if state.job_count == -1:
 | |
|             state.job_count = p.n_iter
 | |
| 
 | |
|         for n in range(p.n_iter):
 | |
|             if state.skipped:
 | |
|                 state.skipped = False
 | |
|             
 | |
|             if state.interrupted:
 | |
|                 break
 | |
| 
 | |
|             prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
 | |
|             seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
 | |
|             subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
 | |
| 
 | |
|             if (len(prompts) == 0):
 | |
|                 break
 | |
| 
 | |
|             #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
 | |
|             #c = p.sd_model.get_learned_conditioning(prompts)
 | |
|             with devices.autocast():
 | |
|                 uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
 | |
|                 c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
 | |
| 
 | |
|             if len(model_hijack.comments) > 0:
 | |
|                 for comment in model_hijack.comments:
 | |
|                     comments[comment] = 1
 | |
| 
 | |
|             if p.n_iter > 1:
 | |
|                 shared.state.job = f"Batch {n+1} out of {p.n_iter}"
 | |
| 
 | |
|             with devices.autocast():
 | |
|                 samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
 | |
| 
 | |
|             if state.interrupted or state.skipped:
 | |
| 
 | |
|                 # if we are interrupted, sample returns just noise
 | |
|                 # use the image collected previously in sampler loop
 | |
|                 samples_ddim = shared.state.current_latent
 | |
| 
 | |
|             samples_ddim = samples_ddim.to(devices.dtype_vae)
 | |
|             x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim)
 | |
|             x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
 | |
| 
 | |
|             del samples_ddim
 | |
| 
 | |
|             if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
 | |
|                 lowvram.send_everything_to_cpu()
 | |
| 
 | |
|             devices.torch_gc()
 | |
| 
 | |
|             if opts.filter_nsfw:
 | |
|                 import modules.safety as safety
 | |
|                 x_samples_ddim = modules.safety.censor_batch(x_samples_ddim)
 | |
| 
 | |
|             for i, x_sample in enumerate(x_samples_ddim):
 | |
|                 x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
 | |
|                 x_sample = x_sample.astype(np.uint8)
 | |
| 
 | |
|                 if p.restore_faces:
 | |
|                     if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
 | |
|                         images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
 | |
| 
 | |
|                     devices.torch_gc()
 | |
| 
 | |
|                     x_sample = modules.face_restoration.restore_faces(x_sample)
 | |
|                     devices.torch_gc()
 | |
| 
 | |
|                 image = Image.fromarray(x_sample)
 | |
| 
 | |
|                 if p.color_corrections is not None and i < len(p.color_corrections):
 | |
|                     if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
 | |
|                         images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
 | |
|                     image = apply_color_correction(p.color_corrections[i], image)
 | |
| 
 | |
|                 if p.overlay_images is not None and i < len(p.overlay_images):
 | |
|                     overlay = p.overlay_images[i]
 | |
| 
 | |
|                     if p.paste_to is not None:
 | |
|                         x, y, w, h = p.paste_to
 | |
|                         base_image = Image.new('RGBA', (overlay.width, overlay.height))
 | |
|                         image = images.resize_image(1, image, w, h)
 | |
|                         base_image.paste(image, (x, y))
 | |
|                         image = base_image
 | |
| 
 | |
|                     image = image.convert('RGBA')
 | |
|                     image.alpha_composite(overlay)
 | |
|                     image = image.convert('RGB')
 | |
| 
 | |
|                 if opts.samples_save and not p.do_not_save_samples:
 | |
|                     images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
 | |
| 
 | |
|                 text = infotext(n, i)
 | |
|                 infotexts.append(text)
 | |
|                 if opts.enable_pnginfo:
 | |
|                     image.info["parameters"] = text
 | |
|                 output_images.append(image)
 | |
| 
 | |
|             del x_samples_ddim 
 | |
| 
 | |
|             devices.torch_gc()
 | |
| 
 | |
|             state.nextjob()
 | |
| 
 | |
|         p.color_corrections = None
 | |
| 
 | |
|         index_of_first_image = 0
 | |
|         unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
 | |
|         if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
 | |
|             grid = images.image_grid(output_images, p.batch_size)
 | |
| 
 | |
|             if opts.return_grid:
 | |
|                 text = infotext()
 | |
|                 infotexts.insert(0, text)
 | |
|                 if opts.enable_pnginfo:
 | |
|                     grid.info["parameters"] = text
 | |
|                 output_images.insert(0, grid)
 | |
|                 index_of_first_image = 1
 | |
| 
 | |
|             if opts.grid_save:
 | |
|                 images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
 | |
| 
 | |
|     devices.torch_gc()
 | |
|     return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
 | |
| 
 | |
| 
 | |
| class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
 | |
|     sampler = None
 | |
|     firstphase_width = 0
 | |
|     firstphase_height = 0
 | |
|     firstphase_width_truncated = 0
 | |
|     firstphase_height_truncated = 0
 | |
| 
 | |
|     def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, **kwargs):
 | |
|         super().__init__(**kwargs)
 | |
|         self.enable_hr = enable_hr
 | |
|         self.scale_latent = scale_latent
 | |
|         self.denoising_strength = denoising_strength
 | |
| 
 | |
|     def init(self, all_prompts, all_seeds, all_subseeds):
 | |
|         if self.enable_hr:
 | |
|             if state.job_count == -1:
 | |
|                 state.job_count = self.n_iter * 2
 | |
|             else:
 | |
|                 state.job_count = state.job_count * 2
 | |
| 
 | |
|             desired_pixel_count = 512 * 512
 | |
|             actual_pixel_count = self.width * self.height
 | |
|             scale = math.sqrt(desired_pixel_count / actual_pixel_count)
 | |
| 
 | |
|             self.firstphase_width = math.ceil(scale * self.width / 64) * 64
 | |
|             self.firstphase_height = math.ceil(scale * self.height / 64) * 64
 | |
|             self.firstphase_width_truncated = int(scale * self.width)
 | |
|             self.firstphase_height_truncated = int(scale * self.height)
 | |
| 
 | |
|     def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
 | |
|         self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
 | |
| 
 | |
|         if not self.enable_hr:
 | |
|             x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
 | |
|             samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
 | |
|             return samples
 | |
| 
 | |
|         x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
 | |
|         samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
 | |
| 
 | |
|         truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f
 | |
|         truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f
 | |
| 
 | |
|         samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2]
 | |
| 
 | |
|         if self.scale_latent:
 | |
|             samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
 | |
|         else:
 | |
|             decoded_samples = decode_first_stage(self.sd_model, samples)
 | |
| 
 | |
|             if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None":
 | |
|                 decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
 | |
|             else:
 | |
|                 lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
 | |
| 
 | |
|                 batch_images = []
 | |
|                 for i, x_sample in enumerate(lowres_samples):
 | |
|                     x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
 | |
|                     x_sample = x_sample.astype(np.uint8)
 | |
|                     image = Image.fromarray(x_sample)
 | |
|                     image = images.resize_image(0, image, self.width, self.height)
 | |
|                     image = np.array(image).astype(np.float32) / 255.0
 | |
|                     image = np.moveaxis(image, 2, 0)
 | |
|                     batch_images.append(image)
 | |
| 
 | |
|                 decoded_samples = torch.from_numpy(np.array(batch_images))
 | |
|                 decoded_samples = decoded_samples.to(shared.device)
 | |
|                 decoded_samples = 2. * decoded_samples - 1.
 | |
| 
 | |
|             samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
 | |
| 
 | |
|         shared.state.nextjob()
 | |
| 
 | |
|         self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
 | |
| 
 | |
|         noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
 | |
| 
 | |
|         # GC now before running the next img2img to prevent running out of memory
 | |
|         x = None
 | |
|         devices.torch_gc()
 | |
| 
 | |
|         samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
 | |
| 
 | |
|         return samples
 | |
| 
 | |
| 
 | |
| class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
 | |
|     sampler = None
 | |
| 
 | |
|     def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs):
 | |
|         super().__init__(**kwargs)
 | |
| 
 | |
|         self.init_images = init_images
 | |
|         self.resize_mode: int = resize_mode
 | |
|         self.denoising_strength: float = denoising_strength
 | |
|         self.init_latent = None
 | |
|         self.image_mask = mask
 | |
|         #self.image_unblurred_mask = None
 | |
|         self.latent_mask = None
 | |
|         self.mask_for_overlay = None
 | |
|         self.mask_blur = mask_blur
 | |
|         self.inpainting_fill = inpainting_fill
 | |
|         self.inpaint_full_res = inpaint_full_res
 | |
|         self.inpaint_full_res_padding = inpaint_full_res_padding
 | |
|         self.inpainting_mask_invert = inpainting_mask_invert
 | |
|         self.mask = None
 | |
|         self.nmask = None
 | |
| 
 | |
|     def init(self, all_prompts, all_seeds, all_subseeds):
 | |
|         self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
 | |
|         crop_region = None
 | |
| 
 | |
|         if self.image_mask is not None:
 | |
|             self.image_mask = self.image_mask.convert('L')
 | |
| 
 | |
|             if self.inpainting_mask_invert:
 | |
|                 self.image_mask = ImageOps.invert(self.image_mask)
 | |
| 
 | |
|             #self.image_unblurred_mask = self.image_mask
 | |
| 
 | |
|             if self.mask_blur > 0:
 | |
|                 self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
 | |
| 
 | |
|             if self.inpaint_full_res:
 | |
|                 self.mask_for_overlay = self.image_mask
 | |
|                 mask = self.image_mask.convert('L')
 | |
|                 crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
 | |
|                 crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
 | |
|                 x1, y1, x2, y2 = crop_region
 | |
| 
 | |
|                 mask = mask.crop(crop_region)
 | |
|                 self.image_mask = images.resize_image(2, mask, self.width, self.height)
 | |
|                 self.paste_to = (x1, y1, x2-x1, y2-y1)
 | |
|             else:
 | |
|                 self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
 | |
|                 np_mask = np.array(self.image_mask)
 | |
|                 np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
 | |
|                 self.mask_for_overlay = Image.fromarray(np_mask)
 | |
| 
 | |
|             self.overlay_images = []
 | |
| 
 | |
|         latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask
 | |
| 
 | |
|         add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
 | |
|         if add_color_corrections:
 | |
|             self.color_corrections = []
 | |
|         imgs = []
 | |
|         for img in self.init_images:
 | |
|             image = img.convert("RGB")
 | |
| 
 | |
|             if crop_region is None:
 | |
|                 image = images.resize_image(self.resize_mode, image, self.width, self.height)
 | |
| 
 | |
|             if self.image_mask is not None:
 | |
|                 image_masked = Image.new('RGBa', (image.width, image.height))
 | |
|                 image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
 | |
| 
 | |
|                 self.overlay_images.append(image_masked.convert('RGBA'))
 | |
| 
 | |
|             if crop_region is not None:
 | |
|                 image = image.crop(crop_region)
 | |
|                 image = images.resize_image(2, image, self.width, self.height)
 | |
| 
 | |
|             if self.image_mask is not None:
 | |
|                 if self.inpainting_fill != 1:
 | |
|                     image = masking.fill(image, latent_mask)
 | |
| 
 | |
|             if add_color_corrections:
 | |
|                 self.color_corrections.append(setup_color_correction(image))
 | |
| 
 | |
|             image = np.array(image).astype(np.float32) / 255.0
 | |
|             image = np.moveaxis(image, 2, 0)
 | |
| 
 | |
|             imgs.append(image)
 | |
| 
 | |
|         if len(imgs) == 1:
 | |
|             batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
 | |
|             if self.overlay_images is not None:
 | |
|                 self.overlay_images = self.overlay_images * self.batch_size
 | |
|         elif len(imgs) <= self.batch_size:
 | |
|             self.batch_size = len(imgs)
 | |
|             batch_images = np.array(imgs)
 | |
|         else:
 | |
|             raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
 | |
| 
 | |
|         image = torch.from_numpy(batch_images)
 | |
|         image = 2. * image - 1.
 | |
|         image = image.to(shared.device)
 | |
| 
 | |
|         self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
 | |
| 
 | |
|         if self.image_mask is not None:
 | |
|             init_mask = latent_mask
 | |
|             latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
 | |
|             latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
 | |
|             latmask = latmask[0]
 | |
|             latmask = np.around(latmask)
 | |
|             latmask = np.tile(latmask[None], (4, 1, 1))
 | |
| 
 | |
|             self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
 | |
|             self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
 | |
| 
 | |
|             # this needs to be fixed to be done in sample() using actual seeds for batches
 | |
|             if self.inpainting_fill == 2:
 | |
|                 self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
 | |
|             elif self.inpainting_fill == 3:
 | |
|                 self.init_latent = self.init_latent * self.mask
 | |
| 
 | |
|     def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
 | |
|         x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
 | |
| 
 | |
|         samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
 | |
| 
 | |
|         if self.mask is not None:
 | |
|             samples = samples * self.nmask + self.init_latent * self.mask
 | |
| 
 | |
|         del x
 | |
|         devices.torch_gc()
 | |
| 
 | |
|         return samples
 | 
