mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-26 07:31:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			204 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			204 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import math
 | |
| import ldm.models.diffusion.ddim
 | |
| import ldm.models.diffusion.plms
 | |
| 
 | |
| import numpy as np
 | |
| import torch
 | |
| 
 | |
| from modules.shared import state
 | |
| from modules import sd_samplers_common, prompt_parser, shared
 | |
| import modules.models.diffusion.uni_pc
 | |
| 
 | |
| 
 | |
| samplers_data_compvis = [
 | |
|     sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
 | |
|     sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
 | |
|     sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {}),
 | |
| ]
 | |
| 
 | |
| 
 | |
| class VanillaStableDiffusionSampler:
 | |
|     def __init__(self, constructor, sd_model):
 | |
|         self.sampler = constructor(sd_model)
 | |
|         self.is_ddim = hasattr(self.sampler, 'p_sample_ddim')
 | |
|         self.is_plms = hasattr(self.sampler, 'p_sample_plms')
 | |
|         self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler)
 | |
|         self.orig_p_sample_ddim = None
 | |
|         if self.is_plms:
 | |
|             self.orig_p_sample_ddim = self.sampler.p_sample_plms
 | |
|         elif self.is_ddim:
 | |
|             self.orig_p_sample_ddim = self.sampler.p_sample_ddim
 | |
|         self.mask = None
 | |
|         self.nmask = None
 | |
|         self.init_latent = None
 | |
|         self.sampler_noises = None
 | |
|         self.step = 0
 | |
|         self.stop_at = None
 | |
|         self.eta = None
 | |
|         self.config = None
 | |
|         self.last_latent = None
 | |
| 
 | |
|         self.conditioning_key = sd_model.model.conditioning_key
 | |
| 
 | |
|     def number_of_needed_noises(self, p):
 | |
|         return 0
 | |
| 
 | |
|     def launch_sampling(self, steps, func):
 | |
|         state.sampling_steps = steps
 | |
|         state.sampling_step = 0
 | |
| 
 | |
|         try:
 | |
|             return func()
 | |
|         except sd_samplers_common.InterruptedException:
 | |
|             return self.last_latent
 | |
| 
 | |
|     def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
 | |
|         x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
 | |
| 
 | |
|         res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
 | |
| 
 | |
|         x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
 | |
| 
 | |
|         return res
 | |
| 
 | |
|     def before_sample(self, x, ts, cond, unconditional_conditioning):
 | |
|         if state.interrupted or state.skipped:
 | |
|             raise sd_samplers_common.InterruptedException
 | |
| 
 | |
|         if self.stop_at is not None and self.step > self.stop_at:
 | |
|             raise sd_samplers_common.InterruptedException
 | |
| 
 | |
|         # Have to unwrap the inpainting conditioning here to perform pre-processing
 | |
|         image_conditioning = None
 | |
|         if isinstance(cond, dict):
 | |
|             image_conditioning = cond["c_concat"][0]
 | |
|             cond = cond["c_crossattn"][0]
 | |
|             unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
 | |
| 
 | |
|         conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
 | |
|         unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
 | |
| 
 | |
|         assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
 | |
|         cond = tensor
 | |
| 
 | |
|         # for DDIM, shapes must match, we can't just process cond and uncond independently;
 | |
|         # filling unconditional_conditioning with repeats of the last vector to match length is
 | |
|         # not 100% correct but should work well enough
 | |
|         if unconditional_conditioning.shape[1] < cond.shape[1]:
 | |
|             last_vector = unconditional_conditioning[:, -1:]
 | |
|             last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
 | |
|             unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
 | |
|         elif unconditional_conditioning.shape[1] > cond.shape[1]:
 | |
|             unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
 | |
| 
 | |
|         if self.mask is not None:
 | |
|             img_orig = self.sampler.model.q_sample(self.init_latent, ts)
 | |
|             x = img_orig * self.mask + self.nmask * x
 | |
| 
 | |
|         # Wrap the image conditioning back up since the DDIM code can accept the dict directly.
 | |
|         # Note that they need to be lists because it just concatenates them later.
 | |
|         if image_conditioning is not None:
 | |
|             cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
 | |
|             unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
 | |
| 
 | |
|         return x, ts, cond, unconditional_conditioning
 | |
| 
 | |
|     def update_step(self, last_latent):
 | |
|         if self.mask is not None:
 | |
|             self.last_latent = self.init_latent * self.mask + self.nmask * last_latent
 | |
|         else:
 | |
|             self.last_latent = last_latent
 | |
| 
 | |
|         sd_samplers_common.store_latent(self.last_latent)
 | |
| 
 | |
|         self.step += 1
 | |
|         state.sampling_step = self.step
 | |
|         shared.total_tqdm.update()
 | |
| 
 | |
|     def after_sample(self, x, ts, cond, uncond, res):
 | |
|         if not self.is_unipc:
 | |
|             self.update_step(res[1])
 | |
| 
 | |
|         return x, ts, cond, uncond, res
 | |
| 
 | |
|     def unipc_after_update(self, x, model_x):
 | |
|         self.update_step(x)
 | |
| 
 | |
|     def initialize(self, p):
 | |
|         self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
 | |
|         if self.eta != 0.0:
 | |
|             p.extra_generation_params["Eta DDIM"] = self.eta
 | |
| 
 | |
|         if self.is_unipc:
 | |
|             keys = [
 | |
|                 ('UniPC variant', 'uni_pc_variant'),
 | |
|                 ('UniPC skip type', 'uni_pc_skip_type'),
 | |
|                 ('UniPC order', 'uni_pc_order'),
 | |
|                 ('UniPC lower order final', 'uni_pc_lower_order_final'),
 | |
|             ]
 | |
| 
 | |
|             for name, key in keys:
 | |
|                 v = getattr(shared.opts, key)
 | |
|                 if v != shared.opts.get_default(key):
 | |
|                     p.extra_generation_params[name] = v
 | |
| 
 | |
|         for fieldname in ['p_sample_ddim', 'p_sample_plms']:
 | |
|             if hasattr(self.sampler, fieldname):
 | |
|                 setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
 | |
|         if self.is_unipc:
 | |
|             self.sampler.set_hooks(lambda x, t, c, u: self.before_sample(x, t, c, u), lambda x, t, c, u, r: self.after_sample(x, t, c, u, r), lambda x, mx: self.unipc_after_update(x, mx))
 | |
| 
 | |
|         self.mask = p.mask if hasattr(p, 'mask') else None
 | |
|         self.nmask = p.nmask if hasattr(p, 'nmask') else None
 | |
| 
 | |
| 
 | |
|     def adjust_steps_if_invalid(self, p, num_steps):
 | |
|         if ((self.config.name == 'DDIM') and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS') or (self.config.name == 'UniPC'):
 | |
|             if self.config.name == 'UniPC' and num_steps < shared.opts.uni_pc_order:
 | |
|                 num_steps = shared.opts.uni_pc_order
 | |
|             valid_step = 999 / (1000 // num_steps)
 | |
|             if valid_step == math.floor(valid_step):
 | |
|                 return int(valid_step) + 1
 | |
| 
 | |
|         return num_steps
 | |
| 
 | |
|     def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
 | |
|         steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
 | |
|         steps = self.adjust_steps_if_invalid(p, steps)
 | |
|         self.initialize(p)
 | |
| 
 | |
|         self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
 | |
|         x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
 | |
| 
 | |
|         self.init_latent = x
 | |
|         self.last_latent = x
 | |
|         self.step = 0
 | |
| 
 | |
|         # Wrap the conditioning models with additional image conditioning for inpainting model
 | |
|         if image_conditioning is not None:
 | |
|             conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
 | |
|             unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
 | |
| 
 | |
|         samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
 | |
| 
 | |
|         return samples
 | |
| 
 | |
|     def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
 | |
|         self.initialize(p)
 | |
| 
 | |
|         self.init_latent = None
 | |
|         self.last_latent = x
 | |
|         self.step = 0
 | |
| 
 | |
|         steps = self.adjust_steps_if_invalid(p, steps or p.steps)
 | |
| 
 | |
|         # Wrap the conditioning models with additional image conditioning for inpainting model
 | |
|         # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
 | |
|         if image_conditioning is not None:
 | |
|             conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
 | |
|             unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
 | |
| 
 | |
|         samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
 | |
| 
 | |
|         return samples_ddim
 | 
