mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			141 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			5.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import math
 | |
| 
 | |
| import gradio as gr
 | |
| import modules.scripts as scripts
 | |
| from modules import deepbooru, images, processing, shared
 | |
| from modules.processing import Processed
 | |
| from modules.shared import opts, state
 | |
| 
 | |
| 
 | |
| class Script(scripts.Script):
 | |
|     def title(self):
 | |
|         return "Loopback"
 | |
| 
 | |
|     def show(self, is_img2img):
 | |
|         return is_img2img
 | |
| 
 | |
|     def ui(self, is_img2img):
 | |
|         loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
 | |
|         final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
 | |
|         denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
 | |
|         append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")
 | |
| 
 | |
|         return [loops, final_denoising_strength, denoising_curve, append_interrogation]
 | |
| 
 | |
|     def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation):
 | |
|         processing.fix_seed(p)
 | |
|         batch_count = p.n_iter
 | |
|         p.extra_generation_params = {
 | |
|             "Final denoising strength": final_denoising_strength,
 | |
|             "Denoising curve": denoising_curve
 | |
|         }
 | |
| 
 | |
|         p.batch_size = 1
 | |
|         p.n_iter = 1
 | |
| 
 | |
|         info = None
 | |
|         initial_seed = None
 | |
|         initial_info = None
 | |
|         initial_denoising_strength = p.denoising_strength
 | |
| 
 | |
|         grids = []
 | |
|         all_images = []
 | |
|         original_init_image = p.init_images
 | |
|         original_prompt = p.prompt
 | |
|         original_inpainting_fill = p.inpainting_fill
 | |
|         state.job_count = loops * batch_count
 | |
| 
 | |
|         initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]
 | |
| 
 | |
|         def calculate_denoising_strength(loop):
 | |
|             strength = initial_denoising_strength
 | |
| 
 | |
|             if loops == 1:
 | |
|                 return strength
 | |
| 
 | |
|             progress = loop / (loops - 1)
 | |
|             if denoising_curve == "Aggressive":
 | |
|                 strength = math.sin((progress) * math.pi * 0.5)
 | |
|             elif denoising_curve == "Lazy":
 | |
|                 strength = 1 - math.cos((progress) * math.pi * 0.5)
 | |
|             else:
 | |
|                 strength = progress
 | |
| 
 | |
|             change = (final_denoising_strength - initial_denoising_strength) * strength
 | |
|             return initial_denoising_strength + change
 | |
| 
 | |
|         history = []
 | |
| 
 | |
|         for n in range(batch_count):
 | |
|             # Reset to original init image at the start of each batch
 | |
|             p.init_images = original_init_image
 | |
| 
 | |
|             # Reset to original denoising strength
 | |
|             p.denoising_strength = initial_denoising_strength
 | |
| 
 | |
|             last_image = None
 | |
| 
 | |
|             for i in range(loops):
 | |
|                 p.n_iter = 1
 | |
|                 p.batch_size = 1
 | |
|                 p.do_not_save_grid = True
 | |
| 
 | |
|                 if opts.img2img_color_correction:
 | |
|                     p.color_corrections = initial_color_corrections
 | |
| 
 | |
|                 if append_interrogation != "None":
 | |
|                     p.prompt = f"{original_prompt}, " if original_prompt else ""
 | |
|                     if append_interrogation == "CLIP":
 | |
|                         p.prompt += shared.interrogator.interrogate(p.init_images[0])
 | |
|                     elif append_interrogation == "DeepBooru":
 | |
|                         p.prompt += deepbooru.model.tag(p.init_images[0])
 | |
| 
 | |
|                 state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"
 | |
| 
 | |
|                 processed = processing.process_images(p)
 | |
| 
 | |
|                 # Generation cancelled.
 | |
|                 if state.interrupted:
 | |
|                     break
 | |
| 
 | |
|                 if initial_seed is None:
 | |
|                     initial_seed = processed.seed
 | |
|                     initial_info = processed.info
 | |
| 
 | |
|                 p.seed = processed.seed + 1
 | |
|                 p.denoising_strength = calculate_denoising_strength(i + 1)
 | |
| 
 | |
|                 if state.skipped:
 | |
|                     break
 | |
| 
 | |
|                 last_image = processed.images[0]
 | |
|                 p.init_images = [last_image]
 | |
|                 p.inpainting_fill = 1 # Set "masked content" to "original" for next loop.
 | |
| 
 | |
|                 if batch_count == 1:
 | |
|                     history.append(last_image)
 | |
|                     all_images.append(last_image)
 | |
| 
 | |
|             if batch_count > 1 and not state.skipped and not state.interrupted:
 | |
|                 history.append(last_image)
 | |
|                 all_images.append(last_image)
 | |
| 
 | |
|             p.inpainting_fill = original_inpainting_fill
 | |
| 
 | |
|             if state.interrupted:
 | |
|                     break
 | |
| 
 | |
|         if len(history) > 1:
 | |
|             grid = images.image_grid(history, rows=1)
 | |
|             if opts.grid_save:
 | |
|                 images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
 | |
| 
 | |
|             if opts.return_grid:
 | |
|                 grids.append(grid)
 | |
| 
 | |
|         all_images = grids + all_images
 | |
| 
 | |
|         processed = Processed(p, all_images, initial_seed, initial_info)
 | |
| 
 | |
|         return processed
 | 
