mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 12:03:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			178 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			178 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import contextlib
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import traceback
 | 
						|
from collections import namedtuple
 | 
						|
import re
 | 
						|
 | 
						|
import torch
 | 
						|
 | 
						|
from torchvision import transforms
 | 
						|
from torchvision.transforms.functional import InterpolationMode
 | 
						|
 | 
						|
import modules.shared as shared
 | 
						|
from modules import devices, paths, lowvram
 | 
						|
 | 
						|
blip_image_eval_size = 384
 | 
						|
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
 | 
						|
clip_model_name = 'ViT-L/14'
 | 
						|
 | 
						|
Category = namedtuple("Category", ["name", "topn", "items"])
 | 
						|
 | 
						|
re_topn = re.compile(r"\.top(\d+)\.")
 | 
						|
 | 
						|
 | 
						|
class InterrogateModels:
 | 
						|
    blip_model = None
 | 
						|
    clip_model = None
 | 
						|
    clip_preprocess = None
 | 
						|
    categories = None
 | 
						|
    dtype = None
 | 
						|
    running_on_cpu = None
 | 
						|
 | 
						|
    def __init__(self, content_dir):
 | 
						|
        self.categories = []
 | 
						|
        self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
 | 
						|
 | 
						|
        if os.path.exists(content_dir):
 | 
						|
            for filename in os.listdir(content_dir):
 | 
						|
                m = re_topn.search(filename)
 | 
						|
                topn = 1 if m is None else int(m.group(1))
 | 
						|
 | 
						|
                with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file:
 | 
						|
                    lines = [x.strip() for x in file.readlines()]
 | 
						|
 | 
						|
                self.categories.append(Category(name=filename, topn=topn, items=lines))
 | 
						|
 | 
						|
    def load_blip_model(self):
 | 
						|
        import models.blip
 | 
						|
 | 
						|
        blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
 | 
						|
        blip_model.eval()
 | 
						|
 | 
						|
        return blip_model
 | 
						|
 | 
						|
    def load_clip_model(self):
 | 
						|
        import clip
 | 
						|
 | 
						|
        if self.running_on_cpu:
 | 
						|
            model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
 | 
						|
        else:
 | 
						|
            model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)
 | 
						|
 | 
						|
        model.eval()
 | 
						|
        model = model.to(devices.device_interrogate)
 | 
						|
 | 
						|
        return model, preprocess
 | 
						|
 | 
						|
    def load(self):
 | 
						|
        if self.blip_model is None:
 | 
						|
            self.blip_model = self.load_blip_model()
 | 
						|
            if not shared.cmd_opts.no_half and not self.running_on_cpu:
 | 
						|
                self.blip_model = self.blip_model.half()
 | 
						|
 | 
						|
        self.blip_model = self.blip_model.to(devices.device_interrogate)
 | 
						|
 | 
						|
        if self.clip_model is None:
 | 
						|
            self.clip_model, self.clip_preprocess = self.load_clip_model()
 | 
						|
            if not shared.cmd_opts.no_half and not self.running_on_cpu:
 | 
						|
                self.clip_model = self.clip_model.half()
 | 
						|
 | 
						|
        self.clip_model = self.clip_model.to(devices.device_interrogate)
 | 
						|
 | 
						|
        self.dtype = next(self.clip_model.parameters()).dtype
 | 
						|
 | 
						|
    def send_clip_to_ram(self):
 | 
						|
        if not shared.opts.interrogate_keep_models_in_memory:
 | 
						|
            if self.clip_model is not None:
 | 
						|
                self.clip_model = self.clip_model.to(devices.cpu)
 | 
						|
 | 
						|
    def send_blip_to_ram(self):
 | 
						|
        if not shared.opts.interrogate_keep_models_in_memory:
 | 
						|
            if self.blip_model is not None:
 | 
						|
                self.blip_model = self.blip_model.to(devices.cpu)
 | 
						|
 | 
						|
    def unload(self):
 | 
						|
        self.send_clip_to_ram()
 | 
						|
        self.send_blip_to_ram()
 | 
						|
 | 
						|
        devices.torch_gc()
 | 
						|
 | 
						|
    def rank(self, image_features, text_array, top_count=1):
 | 
						|
        import clip
 | 
						|
 | 
						|
        if shared.opts.interrogate_clip_dict_limit != 0:
 | 
						|
            text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
 | 
						|
 | 
						|
        top_count = min(top_count, len(text_array))
 | 
						|
        text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
 | 
						|
        text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
 | 
						|
        text_features /= text_features.norm(dim=-1, keepdim=True)
 | 
						|
 | 
						|
        similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
 | 
						|
        for i in range(image_features.shape[0]):
 | 
						|
            similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
 | 
						|
        similarity /= image_features.shape[0]
 | 
						|
 | 
						|
        top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
 | 
						|
        return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
 | 
						|
 | 
						|
    def generate_caption(self, pil_image):
 | 
						|
        gpu_image = transforms.Compose([
 | 
						|
            transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
 | 
						|
            transforms.ToTensor(),
 | 
						|
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
 | 
						|
        ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
 | 
						|
 | 
						|
        with torch.no_grad():
 | 
						|
            caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
 | 
						|
 | 
						|
        return caption[0]
 | 
						|
 | 
						|
    def interrogate(self, pil_image):
 | 
						|
        res = None
 | 
						|
 | 
						|
        try:
 | 
						|
 | 
						|
            if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
 | 
						|
                lowvram.send_everything_to_cpu()
 | 
						|
                devices.torch_gc()
 | 
						|
 | 
						|
            self.load()
 | 
						|
 | 
						|
            caption = self.generate_caption(pil_image)
 | 
						|
            self.send_blip_to_ram()
 | 
						|
            devices.torch_gc()
 | 
						|
 | 
						|
            res = caption
 | 
						|
 | 
						|
            clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
 | 
						|
 | 
						|
            precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
 | 
						|
            with torch.no_grad(), precision_scope("cuda"):
 | 
						|
                image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
 | 
						|
 | 
						|
                image_features /= image_features.norm(dim=-1, keepdim=True)
 | 
						|
 | 
						|
                if shared.opts.interrogate_use_builtin_artists:
 | 
						|
                    artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0]
 | 
						|
 | 
						|
                    res += ", " + artist[0]
 | 
						|
 | 
						|
                for name, topn, items in self.categories:
 | 
						|
                    matches = self.rank(image_features, items, top_count=topn)
 | 
						|
                    for match, score in matches:
 | 
						|
                        if shared.opts.interrogate_return_ranks:
 | 
						|
                            res += f", ({match}:{score/100:.3f})"
 | 
						|
                        else:
 | 
						|
                            res += ", " + match
 | 
						|
 | 
						|
        except Exception:
 | 
						|
            print(f"Error interrogating", file=sys.stderr)
 | 
						|
            print(traceback.format_exc(), file=sys.stderr)
 | 
						|
            res += "<error>"
 | 
						|
 | 
						|
        self.unload()
 | 
						|
 | 
						|
        return res
 |