mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-11-04 12:03:36 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			208 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						|
import os
 | 
						|
from collections import namedtuple
 | 
						|
from modules import shared, devices, script_callbacks
 | 
						|
from modules.paths import models_path
 | 
						|
import glob
 | 
						|
 | 
						|
 | 
						|
model_dir = "Stable-diffusion"
 | 
						|
model_path = os.path.abspath(os.path.join(models_path, model_dir))
 | 
						|
vae_dir = "VAE"
 | 
						|
vae_path = os.path.abspath(os.path.join(models_path, vae_dir))
 | 
						|
 | 
						|
 | 
						|
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
 | 
						|
 | 
						|
 | 
						|
default_vae_dict = {"auto": "auto", "None": "None"}
 | 
						|
default_vae_list = ["auto", "None"]
 | 
						|
 | 
						|
 | 
						|
default_vae_values = [default_vae_dict[x] for x in default_vae_list]
 | 
						|
vae_dict = dict(default_vae_dict)
 | 
						|
vae_list = list(default_vae_list)
 | 
						|
first_load = True
 | 
						|
 | 
						|
 | 
						|
base_vae = None
 | 
						|
loaded_vae_file = None
 | 
						|
checkpoint_info = None
 | 
						|
 | 
						|
 | 
						|
def get_base_vae(model):
 | 
						|
    if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
 | 
						|
        return base_vae
 | 
						|
    return None
 | 
						|
 | 
						|
 | 
						|
def store_base_vae(model):
 | 
						|
    global base_vae, checkpoint_info
 | 
						|
    if checkpoint_info != model.sd_checkpoint_info:
 | 
						|
        base_vae = model.first_stage_model.state_dict().copy()
 | 
						|
        checkpoint_info = model.sd_checkpoint_info
 | 
						|
 | 
						|
 | 
						|
def delete_base_vae():
 | 
						|
    global base_vae, checkpoint_info
 | 
						|
    base_vae = None
 | 
						|
    checkpoint_info = None
 | 
						|
 | 
						|
 | 
						|
def restore_base_vae(model):
 | 
						|
    global base_vae, checkpoint_info
 | 
						|
    if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
 | 
						|
        load_vae_dict(model, base_vae)
 | 
						|
    delete_base_vae()
 | 
						|
 | 
						|
 | 
						|
def get_filename(filepath):
 | 
						|
    return os.path.splitext(os.path.basename(filepath))[0]
 | 
						|
 | 
						|
 | 
						|
def refresh_vae_list(vae_path=vae_path, model_path=model_path):
 | 
						|
    global vae_dict, vae_list
 | 
						|
    res = {}
 | 
						|
    candidates = [
 | 
						|
        *glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True),
 | 
						|
        *glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True),
 | 
						|
        *glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True),
 | 
						|
        *glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True)
 | 
						|
    ]
 | 
						|
    if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path):
 | 
						|
        candidates.append(shared.cmd_opts.vae_path)
 | 
						|
    for filepath in candidates:
 | 
						|
        name = get_filename(filepath)
 | 
						|
        res[name] = filepath
 | 
						|
    vae_list.clear()
 | 
						|
    vae_list.extend(default_vae_list)
 | 
						|
    vae_list.extend(list(res.keys()))
 | 
						|
    vae_dict.clear()
 | 
						|
    vae_dict.update(res)
 | 
						|
    vae_dict.update(default_vae_dict)
 | 
						|
    return vae_list
 | 
						|
 | 
						|
 | 
						|
def resolve_vae(checkpoint_file, vae_file="auto"):
 | 
						|
    global first_load, vae_dict, vae_list
 | 
						|
 | 
						|
    # if vae_file argument is provided, it takes priority, but not saved
 | 
						|
    if vae_file and vae_file not in default_vae_list:
 | 
						|
        if not os.path.isfile(vae_file):
 | 
						|
            vae_file = "auto"
 | 
						|
            print("VAE provided as function argument doesn't exist")
 | 
						|
    # for the first load, if vae-path is provided, it takes priority, saved, and failure is reported
 | 
						|
    if first_load and shared.cmd_opts.vae_path is not None:
 | 
						|
        if os.path.isfile(shared.cmd_opts.vae_path):
 | 
						|
            vae_file = shared.cmd_opts.vae_path
 | 
						|
            shared.opts.data['sd_vae'] = get_filename(vae_file)
 | 
						|
        else:
 | 
						|
            print("VAE provided as command line argument doesn't exist")
 | 
						|
    # else, we load from settings
 | 
						|
    if vae_file == "auto" and shared.opts.sd_vae is not None:
 | 
						|
        # if saved VAE settings isn't recognized, fallback to auto
 | 
						|
        vae_file = vae_dict.get(shared.opts.sd_vae, "auto")
 | 
						|
        # if VAE selected but not found, fallback to auto
 | 
						|
        if vae_file not in default_vae_values and not os.path.isfile(vae_file):
 | 
						|
            vae_file = "auto"
 | 
						|
            print("Selected VAE doesn't exist")
 | 
						|
    # vae-path cmd arg takes priority for auto
 | 
						|
    if vae_file == "auto" and shared.cmd_opts.vae_path is not None:
 | 
						|
        if os.path.isfile(shared.cmd_opts.vae_path):
 | 
						|
            vae_file = shared.cmd_opts.vae_path
 | 
						|
            print("Using VAE provided as command line argument")
 | 
						|
    # if still not found, try look for ".vae.pt" beside model
 | 
						|
    model_path = os.path.splitext(checkpoint_file)[0]
 | 
						|
    if vae_file == "auto":
 | 
						|
        vae_file_try = model_path + ".vae.pt"
 | 
						|
        if os.path.isfile(vae_file_try):
 | 
						|
            vae_file = vae_file_try
 | 
						|
            print("Using VAE found beside selected model")
 | 
						|
    # if still not found, try look for ".vae.ckpt" beside model
 | 
						|
    if vae_file == "auto":
 | 
						|
        vae_file_try = model_path + ".vae.ckpt"
 | 
						|
        if os.path.isfile(vae_file_try):
 | 
						|
            vae_file = vae_file_try
 | 
						|
            print("Using VAE found beside selected model")
 | 
						|
    # No more fallbacks for auto
 | 
						|
    if vae_file == "auto":
 | 
						|
        vae_file = None
 | 
						|
    # Last check, just because
 | 
						|
    if vae_file and not os.path.exists(vae_file):
 | 
						|
        vae_file = None
 | 
						|
 | 
						|
    return vae_file
 | 
						|
 | 
						|
 | 
						|
def load_vae(model, vae_file=None):
 | 
						|
    global first_load, vae_dict, vae_list, loaded_vae_file
 | 
						|
    # save_settings = False
 | 
						|
 | 
						|
    if vae_file:
 | 
						|
        print(f"Loading VAE weights from: {vae_file}")
 | 
						|
        vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
 | 
						|
        vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
 | 
						|
        load_vae_dict(model, vae_dict_1)
 | 
						|
 | 
						|
        # If vae used is not in dict, update it
 | 
						|
        # It will be removed on refresh though
 | 
						|
        vae_opt = get_filename(vae_file)
 | 
						|
        if vae_opt not in vae_dict:
 | 
						|
            vae_dict[vae_opt] = vae_file
 | 
						|
            vae_list.append(vae_opt)
 | 
						|
 | 
						|
    loaded_vae_file = vae_file
 | 
						|
 | 
						|
    """
 | 
						|
    # Save current VAE to VAE settings, maybe? will it work?
 | 
						|
    if save_settings:
 | 
						|
        if vae_file is None:
 | 
						|
            vae_opt = "None"
 | 
						|
 | 
						|
        # shared.opts.sd_vae = vae_opt
 | 
						|
    """
 | 
						|
 | 
						|
    first_load = False
 | 
						|
 | 
						|
 | 
						|
# don't call this from outside
 | 
						|
def load_vae_dict(model, vae_dict_1=None):
 | 
						|
    if vae_dict_1:
 | 
						|
        store_base_vae(model)
 | 
						|
        model.first_stage_model.load_state_dict(vae_dict_1)
 | 
						|
    else:
 | 
						|
        restore_base_vae()
 | 
						|
    model.first_stage_model.to(devices.dtype_vae)
 | 
						|
 | 
						|
 | 
						|
def reload_vae_weights(sd_model=None, vae_file="auto"):
 | 
						|
    from modules import lowvram, devices, sd_hijack
 | 
						|
 | 
						|
    if not sd_model:
 | 
						|
        sd_model = shared.sd_model
 | 
						|
 | 
						|
    checkpoint_info = sd_model.sd_checkpoint_info
 | 
						|
    checkpoint_file = checkpoint_info.filename
 | 
						|
    vae_file = resolve_vae(checkpoint_file, vae_file=vae_file)
 | 
						|
 | 
						|
    if loaded_vae_file == vae_file:
 | 
						|
        return
 | 
						|
 | 
						|
    if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
 | 
						|
        lowvram.send_everything_to_cpu()
 | 
						|
    else:
 | 
						|
        sd_model.to(devices.cpu)
 | 
						|
 | 
						|
    sd_hijack.model_hijack.undo_hijack(sd_model)
 | 
						|
 | 
						|
    load_vae(sd_model, vae_file)
 | 
						|
 | 
						|
    sd_hijack.model_hijack.hijack(sd_model)
 | 
						|
    script_callbacks.model_loaded_callback(sd_model)
 | 
						|
 | 
						|
    if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
 | 
						|
        sd_model.to(devices.device)
 | 
						|
 | 
						|
    print(f"VAE Weights loaded.")
 | 
						|
    return sd_model
 |