mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			133 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| 
 | |
| import cv2
 | |
| import torch
 | |
| 
 | |
| import modules.face_restoration
 | |
| import modules.shared
 | |
| from modules import shared, devices, modelloader, errors
 | |
| from modules.paths import models_path
 | |
| 
 | |
| # codeformer people made a choice to include modified basicsr library to their project which makes
 | |
| # it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN.
 | |
| # I am making a choice to include some files from codeformer to work around this issue.
 | |
| model_dir = "Codeformer"
 | |
| model_path = os.path.join(models_path, model_dir)
 | |
| model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth'
 | |
| 
 | |
| codeformer = None
 | |
| 
 | |
| 
 | |
| def setup_model(dirname):
 | |
|     os.makedirs(model_path, exist_ok=True)
 | |
| 
 | |
|     path = modules.paths.paths.get("CodeFormer", None)
 | |
|     if path is None:
 | |
|         return
 | |
| 
 | |
|     try:
 | |
|         from torchvision.transforms.functional import normalize
 | |
|         from modules.codeformer.codeformer_arch import CodeFormer
 | |
|         from basicsr.utils import img2tensor, tensor2img
 | |
|         from facelib.utils.face_restoration_helper import FaceRestoreHelper
 | |
|         from facelib.detection.retinaface import retinaface
 | |
| 
 | |
|         net_class = CodeFormer
 | |
| 
 | |
|         class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration):
 | |
|             def name(self):
 | |
|                 return "CodeFormer"
 | |
| 
 | |
|             def __init__(self, dirname):
 | |
|                 self.net = None
 | |
|                 self.face_helper = None
 | |
|                 self.cmd_dir = dirname
 | |
| 
 | |
|             def create_models(self):
 | |
| 
 | |
|                 if self.net is not None and self.face_helper is not None:
 | |
|                     self.net.to(devices.device_codeformer)
 | |
|                     return self.net, self.face_helper
 | |
|                 model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth', ext_filter=['.pth'])
 | |
|                 if len(model_paths) != 0:
 | |
|                     ckpt_path = model_paths[0]
 | |
|                 else:
 | |
|                     print("Unable to load codeformer model.")
 | |
|                     return None, None
 | |
|                 net = net_class(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer)
 | |
|                 checkpoint = torch.load(ckpt_path)['params_ema']
 | |
|                 net.load_state_dict(checkpoint)
 | |
|                 net.eval()
 | |
| 
 | |
|                 if hasattr(retinaface, 'device'):
 | |
|                     retinaface.device = devices.device_codeformer
 | |
|                 face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
 | |
| 
 | |
|                 self.net = net
 | |
|                 self.face_helper = face_helper
 | |
| 
 | |
|                 return net, face_helper
 | |
| 
 | |
|             def send_model_to(self, device):
 | |
|                 self.net.to(device)
 | |
|                 self.face_helper.face_det.to(device)
 | |
|                 self.face_helper.face_parse.to(device)
 | |
| 
 | |
|             def restore(self, np_image, w=None):
 | |
|                 np_image = np_image[:, :, ::-1]
 | |
| 
 | |
|                 original_resolution = np_image.shape[0:2]
 | |
| 
 | |
|                 self.create_models()
 | |
|                 if self.net is None or self.face_helper is None:
 | |
|                     return np_image
 | |
| 
 | |
|                 self.send_model_to(devices.device_codeformer)
 | |
| 
 | |
|                 self.face_helper.clean_all()
 | |
|                 self.face_helper.read_image(np_image)
 | |
|                 self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
 | |
|                 self.face_helper.align_warp_face()
 | |
| 
 | |
|                 for cropped_face in self.face_helper.cropped_faces:
 | |
|                     cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
 | |
|                     normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
 | |
|                     cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer)
 | |
| 
 | |
|                     try:
 | |
|                         with torch.no_grad():
 | |
|                             output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0]
 | |
|                             restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1))
 | |
|                         del output
 | |
|                         devices.torch_gc()
 | |
|                     except Exception:
 | |
|                         errors.report('Failed inference for CodeFormer', exc_info=True)
 | |
|                         restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1))
 | |
| 
 | |
|                     restored_face = restored_face.astype('uint8')
 | |
|                     self.face_helper.add_restored_face(restored_face)
 | |
| 
 | |
|                 self.face_helper.get_inverse_affine(None)
 | |
| 
 | |
|                 restored_img = self.face_helper.paste_faces_to_input_image()
 | |
|                 restored_img = restored_img[:, :, ::-1]
 | |
| 
 | |
|                 if original_resolution != restored_img.shape[0:2]:
 | |
|                     restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
 | |
| 
 | |
|                 self.face_helper.clean_all()
 | |
| 
 | |
|                 if shared.opts.face_restoration_unload:
 | |
|                     self.send_model_to(devices.cpu)
 | |
| 
 | |
|                 return restored_img
 | |
| 
 | |
|         global codeformer
 | |
|         codeformer = FaceRestorerCodeFormer(dirname)
 | |
|         shared.face_restorers.append(codeformer)
 | |
| 
 | |
|     except Exception:
 | |
|         errors.report("Error setting up CodeFormer", exc_info=True)
 | |
| 
 | |
|    # sys.path = stored_sys_path
 | 
