mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-31 01:54:44 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			96 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch
 | |
| 
 | |
| import ldm.models.diffusion.ddpm
 | |
| import ldm.models.diffusion.ddim
 | |
| import ldm.models.diffusion.plms
 | |
| 
 | |
| from ldm.models.diffusion.ddim import noise_like
 | |
| from ldm.models.diffusion.sampling_util import norm_thresholding
 | |
| 
 | |
| 
 | |
| @torch.no_grad()
 | |
| def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
 | |
|                   temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
 | |
|                   unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None):
 | |
|     b, *_, device = *x.shape, x.device
 | |
| 
 | |
|     def get_model_output(x, t):
 | |
|         if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
 | |
|             e_t = self.model.apply_model(x, t, c)
 | |
|         else:
 | |
|             x_in = torch.cat([x] * 2)
 | |
|             t_in = torch.cat([t] * 2)
 | |
| 
 | |
|             if isinstance(c, dict):
 | |
|                 assert isinstance(unconditional_conditioning, dict)
 | |
|                 c_in = {}
 | |
|                 for k in c:
 | |
|                     if isinstance(c[k], list):
 | |
|                         c_in[k] = [
 | |
|                             torch.cat([unconditional_conditioning[k][i], c[k][i]])
 | |
|                             for i in range(len(c[k]))
 | |
|                         ]
 | |
|                     else:
 | |
|                         c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
 | |
|             else:
 | |
|                 c_in = torch.cat([unconditional_conditioning, c])
 | |
| 
 | |
|             e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
 | |
|             e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
 | |
| 
 | |
|         if score_corrector is not None:
 | |
|             assert self.model.parameterization == "eps"
 | |
|             e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
 | |
| 
 | |
|         return e_t
 | |
| 
 | |
|     alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
 | |
|     alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
 | |
|     sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
 | |
|     sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
 | |
| 
 | |
|     def get_x_prev_and_pred_x0(e_t, index):
 | |
|         # select parameters corresponding to the currently considered timestep
 | |
|         a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
 | |
|         a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
 | |
|         sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
 | |
|         sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
 | |
| 
 | |
|         # current prediction for x_0
 | |
|         pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
 | |
|         if quantize_denoised:
 | |
|             pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
 | |
|         if dynamic_threshold is not None:
 | |
|             pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
 | |
|         # direction pointing to x_t
 | |
|         dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
 | |
|         noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
 | |
|         if noise_dropout > 0.:
 | |
|             noise = torch.nn.functional.dropout(noise, p=noise_dropout)
 | |
|         x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
 | |
|         return x_prev, pred_x0
 | |
| 
 | |
|     e_t = get_model_output(x, t)
 | |
|     if len(old_eps) == 0:
 | |
|         # Pseudo Improved Euler (2nd order)
 | |
|         x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
 | |
|         e_t_next = get_model_output(x_prev, t_next)
 | |
|         e_t_prime = (e_t + e_t_next) / 2
 | |
|     elif len(old_eps) == 1:
 | |
|         # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|         e_t_prime = (3 * e_t - old_eps[-1]) / 2
 | |
|     elif len(old_eps) == 2:
 | |
|         # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|         e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
 | |
|     elif len(old_eps) >= 3:
 | |
|         # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
 | |
|         e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
 | |
| 
 | |
|     x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
 | |
| 
 | |
|     return x_prev, pred_x0, e_t
 | |
| 
 | |
| 
 | |
| def do_inpainting_hijack():
 | |
|     ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
 | 
