mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-30 17:38:51 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			93 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			93 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import torch.nn
 | |
| import ldm.modules.diffusionmodules.openaimodel
 | |
| 
 | |
| from modules import script_callbacks, shared, devices
 | |
| 
 | |
| unet_options = []
 | |
| current_unet_option = None
 | |
| current_unet = None
 | |
| 
 | |
| 
 | |
| def list_unets():
 | |
|     new_unets = script_callbacks.list_unets_callback()
 | |
| 
 | |
|     unet_options.clear()
 | |
|     unet_options.extend(new_unets)
 | |
| 
 | |
| 
 | |
| def get_unet_option(option=None):
 | |
|     option = option or shared.opts.sd_unet
 | |
| 
 | |
|     if option == "None":
 | |
|         return None
 | |
| 
 | |
|     if option == "Automatic":
 | |
|         name = shared.sd_model.sd_checkpoint_info.model_name
 | |
| 
 | |
|         options = [x for x in unet_options if x.model_name == name]
 | |
| 
 | |
|         option = options[0].label if options else "None"
 | |
| 
 | |
|     return next(iter([x for x in unet_options if x.label == option]), None)
 | |
| 
 | |
| 
 | |
| def apply_unet(option=None):
 | |
|     global current_unet_option
 | |
|     global current_unet
 | |
| 
 | |
|     new_option = get_unet_option(option)
 | |
|     if new_option == current_unet_option:
 | |
|         return
 | |
| 
 | |
|     if current_unet is not None:
 | |
|         print(f"Dectivating unet: {current_unet.option.label}")
 | |
|         current_unet.deactivate()
 | |
| 
 | |
|     current_unet_option = new_option
 | |
|     if current_unet_option is None:
 | |
|         current_unet = None
 | |
| 
 | |
|         if not (shared.cmd_opts.lowvram or shared.cmd_opts.medvram):
 | |
|             shared.sd_model.model.diffusion_model.to(devices.device)
 | |
| 
 | |
|         return
 | |
| 
 | |
|     shared.sd_model.model.diffusion_model.to(devices.cpu)
 | |
|     devices.torch_gc()
 | |
| 
 | |
|     current_unet = current_unet_option.create_unet()
 | |
|     current_unet.option = current_unet_option
 | |
|     print(f"Activating unet: {current_unet.option.label}")
 | |
|     current_unet.activate()
 | |
| 
 | |
| 
 | |
| class SdUnetOption:
 | |
|     model_name = None
 | |
|     """name of related checkpoint - this option will be selected automatically for unet if the name of checkpoint matches this"""
 | |
| 
 | |
|     label = None
 | |
|     """name of the unet in UI"""
 | |
| 
 | |
|     def create_unet(self):
 | |
|         """returns SdUnet object to be used as a Unet instead of built-in unet when making pictures"""
 | |
|         raise NotImplementedError()
 | |
| 
 | |
| 
 | |
| class SdUnet(torch.nn.Module):
 | |
|     def forward(self, x, timesteps, context, *args, **kwargs):
 | |
|         raise NotImplementedError()
 | |
| 
 | |
|     def activate(self):
 | |
|         pass
 | |
| 
 | |
|     def deactivate(self):
 | |
|         pass
 | |
| 
 | |
| 
 | |
| def UNetModel_forward(self, x, timesteps=None, context=None, *args, **kwargs):
 | |
|     if current_unet is not None:
 | |
|         return current_unet.forward(x, timesteps, context, *args, **kwargs)
 | |
| 
 | |
|     return ldm.modules.diffusionmodules.openaimodel.copy_of_UNetModel_forward_for_webui(self, x, timesteps, context, *args, **kwargs)
 | |
| 
 | 
