mirror of
				https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
				synced 2025-10-30 17:38:51 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			228 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			228 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import os
 | |
| import collections
 | |
| from modules import paths, shared, devices, script_callbacks, sd_models, extra_networks
 | |
| import glob
 | |
| from copy import deepcopy
 | |
| 
 | |
| 
 | |
| vae_path = os.path.abspath(os.path.join(paths.models_path, "VAE"))
 | |
| vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
 | |
| vae_dict = {}
 | |
| 
 | |
| 
 | |
| base_vae = None
 | |
| loaded_vae_file = None
 | |
| checkpoint_info = None
 | |
| 
 | |
| checkpoints_loaded = collections.OrderedDict()
 | |
| 
 | |
| 
 | |
| def get_base_vae(model):
 | |
|     if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
 | |
|         return base_vae
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def store_base_vae(model):
 | |
|     global base_vae, checkpoint_info
 | |
|     if checkpoint_info != model.sd_checkpoint_info:
 | |
|         assert not loaded_vae_file, "Trying to store non-base VAE!"
 | |
|         base_vae = deepcopy(model.first_stage_model.state_dict())
 | |
|         checkpoint_info = model.sd_checkpoint_info
 | |
| 
 | |
| 
 | |
| def delete_base_vae():
 | |
|     global base_vae, checkpoint_info
 | |
|     base_vae = None
 | |
|     checkpoint_info = None
 | |
| 
 | |
| 
 | |
| def restore_base_vae(model):
 | |
|     global loaded_vae_file
 | |
|     if base_vae is not None and checkpoint_info == model.sd_checkpoint_info:
 | |
|         print("Restoring base VAE")
 | |
|         _load_vae_dict(model, base_vae)
 | |
|         loaded_vae_file = None
 | |
|     delete_base_vae()
 | |
| 
 | |
| 
 | |
| def get_filename(filepath):
 | |
|     return os.path.basename(filepath)
 | |
| 
 | |
| 
 | |
| def refresh_vae_list():
 | |
|     global vae_dict
 | |
|     vae_dict.clear()
 | |
| 
 | |
|     paths = [
 | |
|         os.path.join(sd_models.model_path, '**/*.vae.ckpt'),
 | |
|         os.path.join(sd_models.model_path, '**/*.vae.pt'),
 | |
|         os.path.join(sd_models.model_path, '**/*.vae.safetensors'),
 | |
|         os.path.join(vae_path, '**/*.ckpt'),
 | |
|         os.path.join(vae_path, '**/*.pt'),
 | |
|         os.path.join(vae_path, '**/*.safetensors'),
 | |
|     ]
 | |
| 
 | |
|     if shared.cmd_opts.ckpt_dir is not None and os.path.isdir(shared.cmd_opts.ckpt_dir):
 | |
|         paths += [
 | |
|             os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.ckpt'),
 | |
|             os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.pt'),
 | |
|             os.path.join(shared.cmd_opts.ckpt_dir, '**/*.vae.safetensors'),
 | |
|         ]
 | |
| 
 | |
|     if shared.cmd_opts.vae_dir is not None and os.path.isdir(shared.cmd_opts.vae_dir):
 | |
|         paths += [
 | |
|             os.path.join(shared.cmd_opts.vae_dir, '**/*.ckpt'),
 | |
|             os.path.join(shared.cmd_opts.vae_dir, '**/*.pt'),
 | |
|             os.path.join(shared.cmd_opts.vae_dir, '**/*.safetensors'),
 | |
|         ]
 | |
| 
 | |
|     candidates = []
 | |
|     for path in paths:
 | |
|         candidates += glob.iglob(path, recursive=True)
 | |
| 
 | |
|     for filepath in candidates:
 | |
|         name = get_filename(filepath)
 | |
|         vae_dict[name] = filepath
 | |
| 
 | |
|     vae_dict = dict(sorted(vae_dict.items(), key=lambda item: shared.natural_sort_key(item[0])))
 | |
| 
 | |
| 
 | |
| def find_vae_near_checkpoint(checkpoint_file):
 | |
|     checkpoint_path = os.path.basename(checkpoint_file).rsplit('.', 1)[0]
 | |
|     for vae_file in vae_dict.values():
 | |
|         if os.path.basename(vae_file).startswith(checkpoint_path):
 | |
|             return vae_file
 | |
| 
 | |
|     return None
 | |
| 
 | |
| 
 | |
| def resolve_vae(checkpoint_file):
 | |
|     if shared.cmd_opts.vae_path is not None:
 | |
|         return shared.cmd_opts.vae_path, 'from commandline argument'
 | |
| 
 | |
|     metadata = extra_networks.get_user_metadata(checkpoint_file)
 | |
|     vae_metadata = metadata.get("vae", None)
 | |
|     if vae_metadata is not None and vae_metadata != "Automatic":
 | |
|         if vae_metadata == "None":
 | |
|             return None, None
 | |
| 
 | |
|         vae_from_metadata = vae_dict.get(vae_metadata, None)
 | |
|         if vae_from_metadata is not None:
 | |
|             return vae_from_metadata, "from user metadata"
 | |
| 
 | |
|     is_automatic = shared.opts.sd_vae in {"Automatic", "auto"}  # "auto" for people with old config
 | |
| 
 | |
|     vae_near_checkpoint = find_vae_near_checkpoint(checkpoint_file)
 | |
|     if vae_near_checkpoint is not None and (shared.opts.sd_vae_as_default or is_automatic):
 | |
|         return vae_near_checkpoint, 'found near the checkpoint'
 | |
| 
 | |
|     if shared.opts.sd_vae == "None":
 | |
|         return None, None
 | |
| 
 | |
|     vae_from_options = vae_dict.get(shared.opts.sd_vae, None)
 | |
|     if vae_from_options is not None:
 | |
|         return vae_from_options, 'specified in settings'
 | |
| 
 | |
|     if not is_automatic:
 | |
|         print(f"Couldn't find VAE named {shared.opts.sd_vae}; using None instead")
 | |
| 
 | |
|     return None, None
 | |
| 
 | |
| 
 | |
| def load_vae_dict(filename, map_location):
 | |
|     vae_ckpt = sd_models.read_state_dict(filename, map_location=map_location)
 | |
|     vae_dict_1 = {k: v for k, v in vae_ckpt.items() if k[0:4] != "loss" and k not in vae_ignore_keys}
 | |
|     return vae_dict_1
 | |
| 
 | |
| 
 | |
| def load_vae(model, vae_file=None, vae_source="from unknown source"):
 | |
|     global vae_dict, loaded_vae_file
 | |
|     # save_settings = False
 | |
| 
 | |
|     cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0
 | |
| 
 | |
|     if vae_file:
 | |
|         if cache_enabled and vae_file in checkpoints_loaded:
 | |
|             # use vae checkpoint cache
 | |
|             print(f"Loading VAE weights {vae_source}: cached {get_filename(vae_file)}")
 | |
|             store_base_vae(model)
 | |
|             _load_vae_dict(model, checkpoints_loaded[vae_file])
 | |
|         else:
 | |
|             assert os.path.isfile(vae_file), f"VAE {vae_source} doesn't exist: {vae_file}"
 | |
|             print(f"Loading VAE weights {vae_source}: {vae_file}")
 | |
|             store_base_vae(model)
 | |
| 
 | |
|             vae_dict_1 = load_vae_dict(vae_file, map_location=shared.weight_load_location)
 | |
|             _load_vae_dict(model, vae_dict_1)
 | |
| 
 | |
|             if cache_enabled:
 | |
|                 # cache newly loaded vae
 | |
|                 checkpoints_loaded[vae_file] = vae_dict_1.copy()
 | |
| 
 | |
|         # clean up cache if limit is reached
 | |
|         if cache_enabled:
 | |
|             while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: # we need to count the current model
 | |
|                 checkpoints_loaded.popitem(last=False)  # LRU
 | |
| 
 | |
|         # If vae used is not in dict, update it
 | |
|         # It will be removed on refresh though
 | |
|         vae_opt = get_filename(vae_file)
 | |
|         if vae_opt not in vae_dict:
 | |
|             vae_dict[vae_opt] = vae_file
 | |
| 
 | |
|     elif loaded_vae_file:
 | |
|         restore_base_vae(model)
 | |
| 
 | |
|     loaded_vae_file = vae_file
 | |
| 
 | |
| 
 | |
| # don't call this from outside
 | |
| def _load_vae_dict(model, vae_dict_1):
 | |
|     model.first_stage_model.load_state_dict(vae_dict_1)
 | |
|     model.first_stage_model.to(devices.dtype_vae)
 | |
| 
 | |
| 
 | |
| def clear_loaded_vae():
 | |
|     global loaded_vae_file
 | |
|     loaded_vae_file = None
 | |
| 
 | |
| 
 | |
| unspecified = object()
 | |
| 
 | |
| 
 | |
| def reload_vae_weights(sd_model=None, vae_file=unspecified):
 | |
|     from modules import lowvram, devices, sd_hijack
 | |
| 
 | |
|     if not sd_model:
 | |
|         sd_model = shared.sd_model
 | |
| 
 | |
|     checkpoint_info = sd_model.sd_checkpoint_info
 | |
|     checkpoint_file = checkpoint_info.filename
 | |
| 
 | |
|     if vae_file == unspecified:
 | |
|         vae_file, vae_source = resolve_vae(checkpoint_file)
 | |
|     else:
 | |
|         vae_source = "from function argument"
 | |
| 
 | |
|     if loaded_vae_file == vae_file:
 | |
|         return
 | |
| 
 | |
|     if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
 | |
|         lowvram.send_everything_to_cpu()
 | |
|     else:
 | |
|         sd_model.to(devices.cpu)
 | |
| 
 | |
|     sd_hijack.model_hijack.undo_hijack(sd_model)
 | |
| 
 | |
|     load_vae(sd_model, vae_file, vae_source)
 | |
| 
 | |
|     sd_hijack.model_hijack.hijack(sd_model)
 | |
|     script_callbacks.model_loaded_callback(sd_model)
 | |
| 
 | |
|     if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
 | |
|         sd_model.to(devices.device)
 | |
| 
 | |
|     print("VAE weights loaded.")
 | |
|     return sd_model
 | 
