unstructured/test_unstructured_ingest/python/test-ingest-astra-output.py

54 lines
1.8 KiB
Python
Raw Normal View History

import click
from astrapy.db import AstraDB
@click.command()
@click.option("--token", type=str)
@click.option("--api-endpoint", type=str)
@click.option("--collection-name", type=str, default="collection_test")
@click.option("--embedding-dimension", type=int, default=384)
def run_check(token, api_endpoint, collection_name, embedding_dimension):
print(f"Checking contents of Astra DB collection: {collection_name}")
# Initialize our vector db
astra_db = AstraDB(token=token, api_endpoint=api_endpoint)
astra_db_collection = astra_db.collection(collection_name)
# Tally up the embeddings
docs_count = astra_db_collection.count_documents()
number_of_embeddings = docs_count["status"]["count"]
# Print the results
expected_embeddings = 3
print(
f"# of embeddings in collection vs expected: {number_of_embeddings}/{expected_embeddings}"
)
# Check that the assertion is true
assert number_of_embeddings == expected_embeddings, (
f"Number of rows in generated table ({number_of_embeddings})"
f"doesn't match expected value: {expected_embeddings}"
)
# Grab an embedding from the collection and search against itself
# Should get the same document back as the most similar
find_one = astra_db_collection.find_one()
random_vector = find_one["data"]["document"]["$vector"]
random_text = find_one["data"]["document"]["content"]
# Perform a similarity search
find_result = astra_db_collection.vector_find(random_vector, limit=1)
# Check that we retrieved the coded cleats copy data
assert find_result[0]["content"] == random_text
print("Vector search complete.")
# Clean up the collection
astra_db.delete_collection(collection_name)
print("Table deletion complete")
if __name__ == "__main__":
run_check()