unstructured/docs/source/examples/dict_to_elements.rst

111 lines
3.1 KiB
ReStructuredText
Raw Normal View History

Multi-files API Processing with Unstructured Connector & Context-Aware Chunking
===============================================================================
.. contents::
:local:
:depth: 2
Introduction
============
This guide demonstrates how to process multiple files using the Unstructured API and S3 Connector and implement context-aware chunking. The process involves installing dependencies, configuring settings, and utilizing Python scripts to manage and chunk data effectively.
Prerequisites
=============
Ensure you have Unstructured API key and access to an S3 bucket containing the target files.
Step 1: Install Unstructured and S3 Dependency
==============================================
Install the `unstructured` package with S3 support.
.. code-block:: python
pip install "unstructured[s3]"
Step 2: Import Libraries
========================
Import necessary libraries from the `unstructured` package for chunking and S3 processing.
.. code-block:: python
from unstructured.ingest.interfaces import (
FsspecConfig,
PartitionConfig,
ProcessorConfig,
ReadConfig,
)
from unstructured.ingest.runner import S3Runner
from unstructured.chunking.title import chunk_by_title
from unstructured.staging.base import dict_to_elements
Step 3: Configuration
=====================
Set up the API key and S3 URL for accessing the data.
.. code-block:: python
UNSTRUCTURED_API_KEY = os.getenv('UNSTRUCTURED_API_KEY')
S3_URL = "s3://rh-financial-reports/world-development-bank-2023/"
Step 4: Python Runner
=====================
Configure and run the S3Runner for processing the data.
.. code-block:: python
runner = S3Runner(
processor_config=ProcessorConfig(
verbose=True,
output_dir="Connector-Output",
num_processes=8,
),
read_config=ReadConfig(),
partition_config=PartitionConfig(
partition_endpoint="https://api.unstructured.io/general/v0/general",
partition_by_api=True,
api_key=UNSTRUCTURED_API_KEY,
strategy="hi_res",
hi_res_model_name="yolox",
pdf_infer_table_structure=True,
),
fsspec_config=FsspecConfig(
remote_url=S3_URL,
),
)
runner.run(anonymous=True)
Step 5: Combine JSON Files from Multi-files Ingestion
=====================================================
Combine JSON files into a single dataset for further processing.
.. code-block:: python
combined_json_data = read_and_combine_json("Connector-Output/world-development-bank-2023")
Step 6: Convert into Unstructured Elements for Chunking
=======================================================
Convert the combined JSON data into Unstructured Elements and apply chunking by title.
.. code-block:: python
elements = dict_to_elements(combined_json_data)
chunks = chunk_by_title(elements)
Conclusion
==========
Following these steps allows for efficient processing of multiple files using the Unstructured S3 Connector. The context-aware chunking helps in organizing and analyzing the data effectively.