fix: Add missing diffstat command to test_json_to_html CI job (#3992)

Removed some additional html fixtures. The original json fixtures from
which html ones were generated, were removed some time ago.
This commit is contained in:
Marek Połom 2025-04-29 15:29:44 +02:00 committed by GitHub
parent fd9d796797
commit b585df1588
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 2 additions and 945 deletions

View File

@ -345,6 +345,7 @@ jobs:
PYTHONPATH: ${{ github.workspace }} PYTHONPATH: ${{ github.workspace }}
run: | run: |
source .venv/bin/activate source .venv/bin/activate
sudo apt-get install diffstat
./test_unstructured_ingest/check-diff-expected-output-html.sh ./test_unstructured_ingest/check-diff-expected-output-html.sh
test_unstructured_api_unit: test_unstructured_api_unit:

View File

@ -340,4 +340,5 @@ run-jupyter:
.PHONY: html-fixtures-update .PHONY: html-fixtures-update
html-fixtures-update: html-fixtures-update:
rm -r test_unstructured_ingest/expected-structured-output-html && \
test_unstructured_ingest/structured-json-to-html.sh test_unstructured_ingest/expected-structured-output-html test_unstructured_ingest/structured-json-to-html.sh test_unstructured_ingest/expected-structured-output-html

View File

@ -1,563 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<title>
</title>
</head>
<body>
<div class="Header" id="782cf07be8b3ab8f05188e479edb7f61">
Data in Brief 22 (2019) 451457
</div>
<p class="NarrativeText" id="c3e4ba0411db419c34f27ae55762b1c1">
Contents lists available at ScienceDirect
</p>
<h1 class="Title" id="a983d2e46059a8605ebb1077994e6fa3">
Data in Brief
</h1>
<h1 class="Title" id="354cd2b49c1a201a5e91177a17f9b2a3">
journal homepage: www.elsevier.com/locate/dib
</h1>
<h1 class="Title" id="c1c1eeb08eba1d16beccf2034fc87bc8">
Data Article
</h1>
<h1 class="Title" id="f1b37e8056f39eb82901f43f4fe0a239">
Data on environmental sustainable corrosion inhibitor for stainless steel in aggressive environment
</h1>
<h1 class="Title" id="1a4fcf35fcd5d2be9f843f0fb93f3d3e">
Omotayo Sanni n, Abimbola Patricia I. Popoola
</h1>
<p class="UncategorizedText" id="418af174cd1457a5db9b88c3c4a33ce3">
Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa
</p>
<p class="NarrativeText" id="698747e1178c3e0ec15b2eb293e58565">
a r t i c l e i n f o
</p>
<p class="NarrativeText" id="19e64efbeabe463d8d8a6f577d4c6be7">
a b s t r a c t
</p>
<p class="UncategorizedText" id="8e23ddc47eb2833b067fe61c9c413955">
Article history: Received 31 August 2018 Received in revised form 17 November 2018 Accepted 27 November 2018 Available online 30 November 2018
</p>
<h1 class="Title" id="2b0eb4fb8b32b5944bcf711f448ef19a">
Keywords: Corrosion Stainless steel Inhibitor Sulphuric acid
</h1>
<p class="NarrativeText" id="8930d3f5d6929e72cbe35523538fc807">
This data article contains data related to the research article entitled “enhanced corrosion resistance of stainless steel Type 316 in sulphuric acid solution using eco-friendly waste product” (Sanni et al., 2018). In this data article, a comprehensive effect of waste product and optimized process parameter of the inhibitor in 0.5 M H2SO4 solution was presented using weight loss and potentiody- the inhibitor namic polarization techniques. The presence of (egg shell powder) influenced corrosion resistance of stainless steel. Inhibition efficiency value of 94.74% was recorded as a result of inhibition of the steel by the ionized molecules of the inhibiting compound of the egg shell powder influencing the redox mechan- ism reactions responsible for corrosion and surface deterioration.
</p>
<p class="NarrativeText" id="aa8a123d8b7bf47bd15c389a6685d405">
&amp; 2018 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
</p>
<h1 class="Title" id="0757794849e2cca941b30b4e1e82cd4b">
Specification table
</h1>
<p class="UncategorizedText" id="bab7909d0362404432e0cc4f90049b3a">
Subject area More specific subject area Surface science and engineering Type of data
</p>
<h1 class="Title" id="227863137634b2d549494fac759af715">
Materials engineering
</h1>
<h1 class="Title" id="3f88b0d8c42101ff25aeb213051cf81f">
Table and figure
</h1>
<h1 class="Title" id="b6664d832b0c853cff911e63ce738371">
n Corresponding author. tayo.sanni@yahoo.com; SanniO@tut.ac.za
</h1>
<h1 class="Title" id="9b655d4b82dc2b1d75b9c21c7b0fc7f8">
E-mail address: tayo.sanni@yahoo.com (O. Sanni).
</h1>
<p class="NarrativeText" id="96e9fe2b2775d750918a6f92f0d3ad95">
https://doi.org/10.1016/j.dib.2018.11.134 2352-3409/&amp; 2018 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
</p>
<p class="UncategorizedText" id="757b62f5ce8ceee7150b7ce16ea16c93">
452
</p>
<div class="Header" id="fb14c87d94f1676010e46b776d688612">
O. Sanni, A.P.I. Popoola / Data in Brief 22 (2019) 451457
</div>
<p class="NarrativeText" id="72155e648a45896b081904929fc91cc6">
How data were acquired
</p>
<h1 class="Title" id="a577cc1dfaa481812a9cff86c06d9835">
Data format Experimental factors
</h1>
<h1 class="Title" id="9b9d298aef0e8b4a83bca09152a07128">
Experimental features Data source location
</h1>
<h1 class="Title" id="6f850529ced475435229c193a8ee7938">
Accessibility Related research article
</h1>
<p class="NarrativeText" id="c1c91f3ea75c102b6ed42b94530cbafe">
The cleaned and weighed specimen was suspended in beakers con- taining 0.5 M H2SO4 solution of different concentrations of egg shell powder. The pre-weighed stainless steel samples were retrieved from the test solutions after every 24 h, cleaned appropriately, dried and reweighed. Raw, analyzed The difference between the weight at a given time and the initial weight of the specimen was taken as the weight loss, which was used to calculate the corrosion rate and inhibition efficiency. Inhibitor concentration, exposure time Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa Data are available within this article O. Sanni, A. P. I. Popoola, and O. S. I. Fayomi, Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution using eco-friendly waste product, Results in Physics, 9 (2018) 225230.
</p>
<h1 class="Title" id="a5dd74871d789945bd8a9c352d4817fb">
Value of the data
</h1>
<p class="NarrativeText" id="9bed69cd8287b2725bd845ca61ebb3cd">
(cid:1) Data presented here provide optimum conditions of waste material as inhibitor for stainless steel Type 316 in 0.5 M H2SO4 medium. The given data describe the inhibitive performance of eco-friendly egg shell powder on austenitic stainless steel Type 316 corrosion in sulphuric acid environment.
</p>
<p class="NarrativeText" id="2ac3a042a8c89fd81718d1fda7ae576b">
(cid:1) The data obtained for the inhibition of waste product (egg shell powder) on stainless steel Type 316 can be used as basis in determining the inhibitive performance of the same inhibitor in other environments.
</p>
<p class="NarrativeText" id="4962aa80bf0712155f4b781df06b4f1a">
(cid:1) The data can be used to examine the relationship between the process variable as it affect the
</p>
<h1 class="Title" id="3b419c2d586d0eaf047f939c9e41b30f">
nature of inhibition of metals.
</h1>
<li class="ListItem" id="f742be9cbb2d0697a88a9f749bf3185c">
1. Data
</li>
<p class="NarrativeText" id="28d5b195997810a34c2aa96c9f357de2">
The results of the experiment are presented in this session. The results obtained from weight loss method for stainless steel Type 316 immersed in 0.5 M H2SO4 solution in the absence and presence of different concentrations of egg shell powder (ES) are presented in Figs.13 respectively. It can be seen clearly from these Figures that the efficiency of egg shell powder increase with the inhibitor con- centration, The increase in its efficiency could be as a result of increase in the constituent molecule
</p>
<h1 class="Title" id="f3a850e6bd8c0557408ad59167f5461e">
) g m
</h1>
<p class="UncategorizedText" id="3cb4a395dab98ecdc71ad325411cf150">
(
</p>
<h1 class="Title" id="2b2ff92863f302ae630dc410b945333a">
s s o
</h1>
<h1 class="Title" id="0da3f5fd0fd07fc182d371760d9da3c0">
l
</h1>
<h1 class="Title" id="f929b69f05a08ec2b940c9b531740326">
t h g e W
</h1>
<h1 class="Title" id="f0fbafddf553bdea61ac009ad080f1bc">
i
</h1>
<p class="UncategorizedText" id="2b3d55b9ce69bcd15d67071cf0d11814">
30
</p>
<p class="UncategorizedText" id="9673d82062115826d94732418d566ba2">
20
</p>
<h1 class="Title" id="b0304d4851460afe7c95d41feb260093">
10g 8g 6g 4g 2g Control
</h1>
<p class="UncategorizedText" id="7f646e71d7bc0398e9917eec2c29b9ef">
10
</p>
<p class="UncategorizedText" id="12a72cb263173964cf41736e5d3707b2">
48
</p>
<p class="UncategorizedText" id="673fe20c15c1210d134b56828c5a8216">
96
</p>
<p class="UncategorizedText" id="c552ee9963f985fd6b3498e2cf2c6230">
144
</p>
<p class="UncategorizedText" id="16e471ece5a33bfb80b79b89aed6c731">
192
</p>
<h1 class="Title" id="829e97853a2843ff6a8f1cfd3a6c74db">
Exposure Time (Hours)
</h1>
<p class="UncategorizedText" id="b6f97c1cdf0e9f1abebac577d4cf4b2a">
Fig. 1. Weight loss versus exposure time for stainless steel presence of ES.
</p>
<p class="NarrativeText" id="09a5818257d4c970dc57191f38e1c1b0">
immersed in 0.5 M H2SO4 solution in the absence and
</p>
<div class="Header" id="828e27fb21b2ca5e25ebdc5f0693ed7d">
O. Sanni, A.P.I. Popoola / Data in Brief 22 (2019) 451457
</div>
<p class="UncategorizedText" id="81cbf4e59dfe4444a94794a547e9063c">
2.7
</p>
<p class="NarrativeText" id="f1b0da24500b1f98c9debd55a2482b7f">
) r a e y / m m
</p>
<p class="NarrativeText" id="9efd31c777cb3a30d24545982e71644e">
( e t a r n o s o r r o C
</p>
<h1 class="Title" id="a535b571914bff036ee8d7b941a9e14c">
i
</h1>
<p class="UncategorizedText" id="6445348d57f8715d980bbf266f6cc4b3">
1.8
</p>
<p class="UncategorizedText" id="dff5188d0e9db124ca45b71e4123404f">
0.9
</p>
<h1 class="Title" id="2e8665917db0a5ca56fee4e99f113c05">
10g 8g 6g 4g 2g Control
</h1>
<p class="UncategorizedText" id="9b38508e1e3ddd8056482945216e1a28">
24
</p>
<p class="UncategorizedText" id="4638ab00ad25c2044ed18ba57b766d7d">
48
</p>
<p class="UncategorizedText" id="252b95fc79d992358f5e7e4423febe14">
72
</p>
<p class="UncategorizedText" id="963002fc37d4568e01e1361b0f053b53">
96
</p>
<p class="UncategorizedText" id="292f8084988c4f4000fcd5bd2205c36a">
120
</p>
<p class="UncategorizedText" id="5c317addf6947e11fba4c4f584f095c1">
144
</p>
<p class="UncategorizedText" id="95649afacb76442d050ed4534b80c4cc">
168
</p>
<p class="UncategorizedText" id="dad2b03f8f9d732efa19ab6a421e971d">
192
</p>
<h1 class="Title" id="8f500e748d82811ccbb3b715e1932be6">
Exposure time
</h1>
<p class="NarrativeText" id="03f95f2413bbe205cdc6975b1b98ecbe">
Fig. 2. Corrosion rate versus exposure time for stainless steel immersed in 0.5 M H2SO4 solution in the absence and presence of ES.
</p>
<p class="UncategorizedText" id="3c32d78e905ba61d1ae55e0b2ebd5946">
100
</p>
<p class="UncategorizedText" id="78e1f4ff627e16f8159327279bdfcce0">
90
</p>
<p class="UncategorizedText" id="748c1e92cccf809f3776382792e93895">
)
</p>
<p class="UncategorizedText" id="feccbab23ec407ef6cc22348a78244d3">
%
</p>
<p class="UncategorizedText" id="03ac492dccd89cf13a9d40ada0e543e1">
(
</p>
<p class="NarrativeText" id="2a02254b1d03abddd3537dc16c56a6fb">
y c n e c i f f
</p>
<h1 class="Title" id="67504491ab6c6c3603a75d246c50f54d">
i
</h1>
<p class="NarrativeText" id="6a2c597e6f8cfa0954a022873f9dcf6f">
E n o i t i b h n I
</p>
<h1 class="Title" id="f84aae3bf521f4166f63e87b5ef4f035">
i
</h1>
<p class="UncategorizedText" id="b76e96beb931beaef6e3660f5d415c3d">
80
</p>
<p class="UncategorizedText" id="0309a67bcfd5df32328af8c537c708e6">
70
</p>
<p class="UncategorizedText" id="33add4c83afdffa0745406aea3c75b49">
60
</p>
<p class="UncategorizedText" id="e180205da17abbe716978d5c4aa4dd03">
50
</p>
<p class="UncategorizedText" id="18f47de0e9dbec383a50a39027960bc6">
40
</p>
<p class="UncategorizedText" id="89ac5d03f7c6d4fa92bda587be577ab8">
30
</p>
<p class="UncategorizedText" id="93a1080514211ba59a1850d5600c261c">
2g 4g 6g 8g 10g
</p>
<p class="UncategorizedText" id="a66d7b20adfb12a1efd70da1d5b65375">
20
</p>
<p class="UncategorizedText" id="82bf75b4e447974f22e48c9a450c45d5">
10
</p>
<p class="UncategorizedText" id="d460a5ac4c345529812f84dabf681d9f">
0
</p>
<p class="UncategorizedText" id="a6282e95f41f8cb5061e0618a02dc09a">
20
</p>
<p class="UncategorizedText" id="44e027245f6667d8282ec4728ad9c2dd">
40
</p>
<p class="UncategorizedText" id="935862a8bb1abed65afc07fc8d1da166">
60
</p>
<p class="UncategorizedText" id="fada482b9f03a3eda9be2ad92169bc9a">
80
</p>
<p class="UncategorizedText" id="3179f53a093e5bb8064b777a8125c88e">
100
</p>
<p class="UncategorizedText" id="2053a3a5b1e12481504583f7f72979ff">
120
</p>
<p class="UncategorizedText" id="b81dbb6336d2b992478316f8514e94b6">
140
</p>
<p class="UncategorizedText" id="d4eb5e157598e6fa21a6b5b4254e9b5e">
160
</p>
<p class="UncategorizedText" id="f082a93dce4872ddd5ecc97c3a9341fb">
180
</p>
<h1 class="Title" id="4c19db10f909537bf29da9829ab6f81b">
Exposure Time (Hours)
</h1>
<p class="NarrativeText" id="c566a56fa9e9ad6b97408310e357b079">
Fig. 3. Inhibition efficiency versus exposure time for stainless steel immersed in 0.5 M H2SO4 solution in the presence of ES.
</p>
<p class="NarrativeText" id="21233d8e249dd8180c7f2c99a468f337">
number of inhibitor adsorbed on the surface of stainless steel at higher concentration, in order for the active sites of the stainless steel to be protected with the inhibitor molecules. Cathodic and anodic polarized potential are measured in the presence and absence of ES. Fig. 4 shows the cathodic and anodic polarization curves for stainless steel in 0.5 M H2SO4 solution at different ES concentrations. The electrochemical variables such as polarization resistance (PR), corrosion potential (Ecorr), cor- rosion current (icorr), anodic Tafel constant (ba), cathodic Tafel constant (bc) and corrosion rate (mm/ year) values are presented in Table 1. From the polarization curves and electrochemical parameter, icorr value decreased with the addition of inhibitor in 0.5 M H2SO4. Conversely, the icorr further decrease with an increase in inhibitor concentration indicating that the inhibition effects increase with an increase in the egg shell concentration. The process of egg shell inhibition could be attributed to the formation of egg shell powder adsorbed on stainless steel surface protecting corrosion of stainless steel in H2SO4 medium. The likely mechanism is the egg shell adsorption on stainless steel surface through the heteroatoms electron pair and the conjugated systems in egg shell molecular structure as shown in Fig. 1. When the concentration of inhibitor was increased from 2 to 10 g, the corrosion rate values drastically decreased this result show that waste egg shell powder is an effective corrosion inhibitor for stainless steel in H2SO4 solution. The shift in corrosion potential of stainless steel from Tafel curves and electrochemical data indicate that the inhibitor is a mixed-type corrosion inhibitor.
</p>
<p class="UncategorizedText" id="443e25a2b54b8b2a43f8029e07f784b3">
453
</p>
<p class="UncategorizedText" id="33b112b0d8640ab4f13b22a2ee714086">
454
</p>
<div class="Header" id="e87ca7b3cd075aaa0de8030768aca87c">
O. Sanni, A.P.I. Popoola / Data in Brief 22 (2019) 451457
</div>
<p class="UncategorizedText" id="fd8a0feb5e755ece5d9abceb844649ff">
Fig. 4. Anodic and cathodic polarization curve of stainless steel in 0.5 M H2SO4 solution in the presence and absence of ES.
</p>
<p class="UncategorizedText" id="598ed0a58406fc921332297f345b177a">
Table 1 Potentiodynamic polarization data for stainless steel in the absence and presence of ES in 0.5 M H2SO4 solution.
</p>
<h1 class="Title" id="9620a738189422654c5456fa16e507e7">
Inhibitor concentration (g)
</h1>
<h1 class="Title" id="3acf3c88a28cad76984ac041a8f5984c">
bc (V/dec)
</h1>
<h1 class="Title" id="da72962f658cee29281fa0e11a548813">
ba (V/dec)
</h1>
<h1 class="Title" id="63a8b6b360c7a61ef88ad6c0b3d6581d">
Ecorr (V)
</h1>
<h1 class="Title" id="616ac8133f9b985812240add98badf5a">
icorr (A/cm2)
</h1>
<h1 class="Title" id="5ef6c0b5c5c72f20a694c6bce97ed131">
Polarization resistance (Ω)
</h1>
<h1 class="Title" id="6eff2d13b846a74ce08e348c7151dd1c">
Corrosion rate (mm/year)
</h1>
<p class="UncategorizedText" id="4a00cd3d6d5f9b71b105586a17125069">
0 2 4 6 8 10
</p>
<p class="UncategorizedText" id="812204070320132126dcfec00abb07f7">
0.0335 1.9460 0.0163 0.3233 0.1240 0.0382
</p>
<p class="UncategorizedText" id="08c96eb52fe4877d6a26d862f8919d35">
0.0409 0.0596 0.2369 0.0540 0.0556 0.0086
</p>
<p class="UncategorizedText" id="a0aa9bf2a48ed1dff882a16cb320c616">
(cid:3)0.9393 (cid:3)0.8276 (cid:3)0.8825 (cid:3)0.8027 (cid:3)0.5896 (cid:3)0.5356
</p>
<p class="UncategorizedText" id="a725c31d8b684d978174d4dc11d29106">
0.0003 0.0002 0.0001 5.39E-05 5.46E-05 1.24E-05
</p>
<p class="UncategorizedText" id="f66516a9a89cb0ab07ccf9e15086f394">
24.0910 121.440 42.121 373.180 305.650 246.080
</p>
<p class="UncategorizedText" id="a6663f53eba15d4c5596b1f8ec4208fd">
2.8163 1.5054 0.9476 0.4318 0.3772 0.0919
</p>
<p class="NarrativeText" id="f5db77e611b74b7298f1b48a82ffc7be">
The plot of inhibitor concentration over degree of surface coverage versus inhibitor concentration gives a straight line as shown in Fig. 5. The strong correlation reveals that egg shell adsorption on stainless surface in 0.5 M H2SO4 follow Langmuir adsorption isotherm. Figs. 68 show the SEM/EDX surface morphology analysis of stainless steel. Figs. 7 and 8 are the SEM/EDX images of the stainless steel specimens without and with inhibitor after weight loss experiment in sulphuric acid medium. The stainless steel surface corrosion product layer in the absence of inhibitor was porous and as a result gives no corrosion protection. With the presence of ES, corrosion damage was minimized, with an evidence of ES present on the metal surface as shown in Fig. 8.
</p>
<p class="UncategorizedText" id="e4e5f97ab5b56767ed489d7cd3ee04f7">
12
</p>
<p class="UncategorizedText" id="afc0a737ef1e5ffa9d6b72bb32fef683">
C/0
</p>
<p class="UncategorizedText" id="d9a38658d857c1141618ad9115dc48b4">
10
</p>
<p class="UncategorizedText" id="2d046240fd1a0ff3420926f0a54e0aaa">
8
</p>
<p class="UncategorizedText" id="4c136188f1e2e974ec1003968916824a">
0 / C
</p>
<p class="UncategorizedText" id="594366da1ff6e7a343ec1666c5852389">
6
</p>
<p class="UncategorizedText" id="d84c13ba166bd29d042db10acba6d243">
4
</p>
<p class="UncategorizedText" id="d4210b5ce6f99e242d8c1aa586691286">
2
</p>
<p class="UncategorizedText" id="7afb08e1cc308afebdc038fc7e4595ed">
2
</p>
<p class="UncategorizedText" id="696d24804069bc593dc624bf7ba904e2">
4
</p>
<p class="UncategorizedText" id="ef054383c29789c2743d93a6189f7f47">
6
</p>
<p class="UncategorizedText" id="ae2f6fc244a6aa053403e38912fdc56a">
8
</p>
<p class="UncategorizedText" id="33c153482d9c925a35781bd5c9697648">
10
</p>
<h1 class="Title" id="8f325f6eb1678922e83e32746b981b80">
Concentration (g)
</h1>
<h1 class="Title" id="9d46c2166a49c9e3a75ed98cb20ce13f">
Fig. 5. Langmuir adsorption isotherm of ES.
</h1>
<div class="Header" id="9d639b03d26ec1872a4e91ac99031fdf">
O. Sanni, A.P.I. Popoola / Data in Brief 22 (2019) 451457
</div>
<h1 class="Title" id="cfea47dcbf32f3d8597e777afa74d20e">
Fig. 6. SEM/EDX image of as-received stainless steel.
</h1>
<p class="NarrativeText" id="a1e6c9bab7935444a7491a47091be10c">
Fig. 7. SEM/EDX image of stainless steel immersed in 0.5 M H2SO4 solution without inhibitor.
</p>
<p class="NarrativeText" id="49e093091da774c567151e5147c70027">
Fig. 8. SEM/EDX image of stainless steel immersed in 0.5 M H2SO4 solution with the presence of inhibitor.
</p>
<p class="UncategorizedText" id="8ac2e9f97dc89f9d9bac5baec281f7f2">
455
</p>
<p class="UncategorizedText" id="e303e27893be099ef5fd03235efee7fe">
456
</p>
<div class="Header" id="91c8bf5283b45a71164a103f496f93c1">
O. Sanni, A.P.I. Popoola / Data in Brief 22 (2019) 451457
</div>
<li class="ListItem" id="bffefa92b06bc6009f81965d3dadc0ce">
2. Experimental design, materials and methods
</li>
<h1 class="Title" id="484707d26d81d85df99f322c1bbb8ca3">
2.1. Material
</h1>
<p class="NarrativeText" id="79d10fe9600d8d3428b5df86faa7c099">
Austenitic stainless steel Type 316 was used in this study with chemical composition reported in [1,2]. The chemicals used were of annular grade. The inhibitor concentrations are in the range of 2, 4, 6, 8 and 10 g [35]. The structural formula of egg shell powder is shown in Fig. 9.
</p>
<h1 class="Title" id="b6bd160c80816ff7b2d8a36ccfc67568">
Fig. 9. Chemical structure of egg shell powder.
</h1>
<h1 class="Title" id="aeafe864b565b167f053a348390b3eff">
2.2. Weight loss method
</h1>
<p class="NarrativeText" id="0e51f945cacb5ec184a3613487b6fefb">
This physical measurement was carried out in order to provide direct result on how the corrosive environment affects the test sample. The cleaned and weighed specimen was suspended in beakers with the aid of glass hooks and rods with the test solution of ES at different concentration (2, 4, 6, 8 and 10 g). The pre-weighed specimen was retrieved from the test solution after every 24 h, cleaned, dried and reweighed. The difference between the weight at a given time and the initial weight of the specimen was taken as the weight loss which was used to calculate corrosion rate and inhibition efficiency.
</p>
<p class="NarrativeText" id="fed48b9de93d4324223aa5fbdfe2f359">
The corrosion rate (CR) was calculated using Eq. (1) [15]
</p>
<p class="UncategorizedText" id="2c4a913c3a4b8bccd9c7003f25ae25af">
(cid:1) Þ ¼ 87:6W DAT
</p>
<p class="UncategorizedText" id="902d0aabf523c467c200f5203957e606">
(cid:3)
</p>
<h1 class="Title" id="44d54b6fb44ac7afc9f40a0e7a5fcde3">
Corrosion rate CRð
</h1>
<p class="NarrativeText" id="7459b20ea68d65b7a967500f22223507">
where: W is weight loss in mg, A is specimen surface area, T is immersion period in hours and D is the specimen density. From the corrosion rate, the surface coverage (θ) and inhibition efficiencies (IE %) were determined using Eqs. (2) and (3) respectively
</p>
<h1 class="Title" id="543caecd15c161082076a174ea946782">
θ ¼ CRo(cid:3)CR
</h1>
<h1 class="Title" id="b2cc1eda5ffbccf6416235c44181538c">
CRo
</h1>
<h1 class="Title" id="59a609931ac8f9c55855113bfae6655e">
IE ð%Þ ¼ CRo(cid:3)CR
</h1>
<h1 class="Title" id="3bf244c1b2eb32875b292a28c130aba4">
CRo
</h1>
<h1 class="Title" id="2c6d5581a35c83236153f78c5b53cb60">
x
</h1>
<p class="UncategorizedText" id="ca4aeca8c2a7e6b9df923db4a5902289">
100 1
</p>
<p class="NarrativeText" id="a47048cff18528a9a4838728a55e526a">
where: CRo and CR are the corrosion rate in absence and presence of inhibitor respectively.
</p>
<h1 class="Title" id="6aabbfd8e92223470a6c9184a84857c0">
2.3. Potentiodynamic polarization method
</h1>
<p class="NarrativeText" id="c653c9cca5ebdd3089b705f279316500">
The potentiodynamic polarization method was performed on the prepared test samples immersed in 0.5 M H2SO4 solution in the presence and absence of different ES concentrations. A three electrode system was used; stainless steel Type 316 plate as working electrode with an exposed area of 1.0 cm2, platinum rod as counter electrode and silver chloride electrode as reference electrode. The electrode was polished, degreased in acetone and thoroughly rinsed with distilled water before the experiment. Current density against applied potential was plotted. The slope of the linear part in anodic and cathodic plots gives anodic and cathodic constants according to the SternGeary equation, and the
</p>
<h1 class="Title" id="b1cdefa47658616bf79766f8fc353f7c">
ð1Þ
</h1>
<h1 class="Title" id="a1a035eeaa7c25a2b543757f4cc7d0fb">
ð2Þ
</h1>
<h1 class="Title" id="74d17735c911d69b6d10e05d0c9d79d6">
ð3Þ
</h1>
<div class="Header" id="e40c3ee561b10ca5b7a76900c8d5b263">
O. Sanni, A.P.I. Popoola / Data in Brief 22 (2019) 451457
</div>
<p class="NarrativeText" id="ac11629522e563b6a0a8f261ab4b94e0">
steps of the linear polarization plot are substituted to get corrosion current. Nova software was used with linear polarization resistance (LPR) and the current was set to 10 mA (maximum) and 10 nA (minimum). LSV staircase parameter start potential (cid:3)1.5 v, step potential 0.001 m/s and stop potential of þ1.5 v set was used in this study.
</p>
<h1 class="Title" id="2461424bae61c8cfad1cd33a949843f0">
Acknowledgements
</h1>
<p class="NarrativeText" id="2d8a74bbba4ad3bb13afc8a98daec91d">
This work was supported by the National Research Foundation of South Africa and the Tshwane
</p>
<h1 class="Title" id="154e2a7bdebd1347eccb08f349284130">
University of Technology Pretoria South Africa.
</h1>
<p class="NarrativeText" id="41a46b0a6852a31b1e51cf65a4ecf87d">
Transparency document. Supporting information
</p>
<p class="NarrativeText" id="c5635281e7e879dd338b99ae84f94056">
Transparency document associated with this article can be found in the online version at https://doi.
</p>
<p class="UncategorizedText" id="ee62928948d5d7b5e13edf65d917dc63">
org/10.1016/j.dib.2018.11.134.
</p>
<h1 class="Title" id="dbe83d8d2b6784a17d8faae3633b97f9">
References
</h1>
<p class="NarrativeText" id="d08513d888e4133fda75841dd05273d9">
[1] O. Sanni, A.P.I. Popoola, O.S.I. Fayomi, Enhanced corrosion resistance of stainless steel type 316 in sulphuric acid solution
</p>
<p class="NarrativeText" id="29736d79aeb1e5fc195876dbf12f1c57">
using eco-friendly waste product, Results Phys. 9 (2018) 225230.
</p>
<p class="NarrativeText" id="ca40f2c0d5a95e8cddab1c3b76f95e9e">
[2] O. Sanni, A.P.I. Popoola, A. Kolesnikov, Constitutive modeling for prediction of optimal process parameters in corrosion
</p>
<p class="NarrativeText" id="e42cb45853ffd3e2c81095a126918c6c">
inhibition of austenitic stainless steel (Type 316)/acidic medium, Mater. Res. Express. 5 (10) (2018) 115.
</p>
<p class="NarrativeText" id="610ae41b07604b353631457b9a4ad632">
[3] O. Sanni, A.P.I. Popoola, O.S.I. Fayomi, The inhibitive study of egg shell powder on UNS N08904 austenitic stainless steel
</p>
<p class="NarrativeText" id="ae14702f67ee1c5d2e5316e8344a6971">
corrosion in chloride solution, Def. Technol. 14 (2018) 463468.
</p>
<p class="NarrativeText" id="d1c8e3e15192f1bdcda9cf8e38a5573f">
[4] O. Sanni, A.P.I. Popoola, O.S.I. Fayomi, C.A. Loto, A comparative study of inhibitive effect of waste product on stainless steel corrosion in sodium chloride/sulfuric acid environments, Metallogr. Microstruct. Anal. (2018) 117. https://doi.org/10.1007/ s13632-018-0495-5.
</p>
<p class="NarrativeText" id="3827d49ec98a215986f78d1df2ae2d33">
[5] O. Sanni, A.P.I. Popoola, O.S.I. Fayomi, Inhibition of engineering material in sulphuric acid solution using waste product, Contributed Papers from Materials Science and Technology (MS&amp;T18), 2018. 〈https://doi.org/10.7449/2018/MST_2018_254_261〉.
</p>
<p class="UncategorizedText" id="7fbcd3b873966a649efd837300e0c576">
457
</p>
</body>
</html>

View File

@ -1,329 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<title>
</title>
</head>
<body>
<div class="Header" id="d25e5f46b5be5f4c8a6573d0688dae93">
Data in Brief 22 (2019) 484487
</div>
<p class="NarrativeText" id="ffd4c08fe1f13ed4b1c1c523ead5510b">
Contents lists available at ScienceDirect
</p>
<h1 class="Title" id="ab45cdb29d177758321b79d0e5430958">
Data in Brief
</h1>
<h1 class="Title" id="b6ed6a9bb542e0891cebca3fa85e6bcd">
journal homepage: www.elsevier.com/locate/dib
</h1>
<h1 class="Title" id="1acc2228e407a58c34b39c30aed641fe">
Data Article
</h1>
<h1 class="Title" id="798dd79fdd2f8266cf92f28200198e08">
A benchmark dataset for the multiple depot vehicle scheduling problem
</h1>
<p class="UncategorizedText" id="8edd00e1188d7cb75051b1998ee494a9">
Sarang Kulkarni a,b,c,n, Mohan Krishnamoorthy d,e, Abhiram Ranade f, Andreas T. Ernst c, Rahul Patil b
</p>
<p class="UncategorizedText" id="7d3eb41c30b752ac6026851e8119f642">
a IITB-Monash Research Academy, IIT Bombay, Powai, Mumbai 400076, India b SJM School of Management, IIT Bombay, Powai, Mumbai 400076, India c School of Mathematical Sciences, Monash University, Clayton, VIC 3800, Australia d Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia e School of Information Technology and Electrical Engineering, The University of Queensland, QLD 4072, Australia f Department of Computer Science and Engineering, IIT Bombay, Powai, Mumbai 400076, India
</p>
<p class="NarrativeText" id="3f086bae7b6270727b6fca8ba4563fd7">
a r t i c l e i n f o
</p>
<p class="NarrativeText" id="a951e8fba28630797a561ae24142f1b9">
a b s t r a c t
</p>
<p class="UncategorizedText" id="90549df65b3824f67f0290bc96644155">
Article history: Received 21 November 2018 Received in revised form 13 December 2018 Accepted 15 December 2018 Available online 18 December 2018
</p>
<p class="NarrativeText" id="3e158fd01d34697ac14890732b84a1fc">
This data article presents a description of a benchmark dataset for the multiple depot vehicle scheduling problem (MDVSP). The MDVSP is to assign vehicles from different depots to timetabled trips to minimize the total cost of empty travel and waiting. The dataset has been developed to evaluate the heuristics of the MDVSP that are presented in “A new formulation and a column generation-based heuristic for the multiple depot vehicle sche- duling problem” (Kulkarni et al., 2018). The dataset contains 60 problem instances of varying size. Researchers can use the dataset to evaluate the future algorithms for the MDVSP and compare the performance with the existing algorithms. The dataset includes a program that can be used to generate new problem instances of the MDVSP.
</p>
<p class="NarrativeText" id="298de5d25d4db319d8cb1c4da4e14411">
&amp; 2018 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
</p>
<p class="UncategorizedText" id="25ce21c9671271c1639f549d88644f16">
DOI of original article: https://doi.org/10.1016/j.trb.2018.11.007 n Corresponding author at: IITB-Monash Research Academy, IIT Bombay, Powai, Mumbai 400076, India.
</p>
<h1 class="Title" id="b4b1b0bb1bf27aa4de6d404b9304fb02">
E-mail address: sarangkulkarni@iitb.ac.in (S. Kulkarni).
</h1>
<p class="NarrativeText" id="3bf8a8c86295c8d68682ff1c4594b485">
https://doi.org/10.1016/j.dib.2018.12.055 2352-3409/&amp; 2018 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
</p>
<div class="Header" id="690f7bab68c635029827f497e6c2b218">
S. Kulkarni et al. / Data in Brief 22 (2019) 484487
</div>
<p class="UncategorizedText" id="e93f43b23b30a616389e12f193fdf212">
485
</p>
<h1 class="Title" id="8b5f19753e010793be1dd03a4efe1876">
Specifications table
</h1>
<p class="NarrativeText" id="b592fc872f2d852ad0242b2353e61673">
Subject area Operations research More specific subject area Vehicle scheduling Type of data How data were acquired
</p>
<p class="NarrativeText" id="d2073c6354217f9b2d4d5c654d77f232">
Tables, text files Artificially generated by a Cþ þ program on Intels Xeons CPU E5 2670 v2 with Linux operating system. Raw Sixty randomly generated instances of the MDVSP with the number of depots in (8,12,16) and the number of trips in (1500, 2000, 2500, 3000) Randomly generated instances IITB-Monash Research Academy, IIT Bombay, Powai, Mumbai, India. Data can be downloaded from https://orlib.uqcloud.net/ Kulkarni, S., Krishnamoorthy, M., Ranade, A., Ernst, A.T. and Patil, R., 2018. A new formulation and a column generation-based heuristic for the multiple depot vehicle scheduling problem. Transportation Research Part B: Methodological, 118, pp. 457487 [3].
</p>
<h1 class="Title" id="156810b54dfdfa06606b2ab9c20e5936">
Data format Experimental factors
</h1>
<h1 class="Title" id="f10143ddfaeadcb83593edbd06f6dae5">
Experimental features Data source location Data accessibility Related research article
</h1>
<h1 class="Title" id="61e613d4cdb2f24fcb40060db45431c0">
Value of the data
</h1>
<p class="NarrativeText" id="d0dfba5954b055b335476e9249b9a73c">
(cid:2) The dataset contains 60 different problem instances of the MDVSP that can be used to evaluate the
</p>
<h1 class="Title" id="2956461e611848aeaccd16b99fc03400">
performance of the algorithms for the MDVSP.
</h1>
<p class="NarrativeText" id="2f732a3a72336ba52b0b0de6d0008640">
(cid:2) The data provide all the information that is required to model the MDVSP by using the existing
</p>
<h1 class="Title" id="5bd31208ba63e7a44aeea1fd4d721d54">
mathematical formulations.
</h1>
<p class="NarrativeText" id="038f53e4bdc8c6ea7b1c63f1b9a73e2f">
(cid:2) All the problem instances are available for use without any restrictions. (cid:2) The benchmark solutions and solution time for the problem instances are presented in [3] and can
</p>
<p class="NarrativeText" id="15906f62459fa76ddadb7a7ef1ce556b">
be used for the comparison.
</p>
<p class="NarrativeText" id="4a39c62bb4f7476ec42fd81325ea6f19">
(cid:2) The dataset includes a program that can generate similar problem instances of different sizes.
</p>
<li class="ListItem" id="414bd3131cd65d5c68e1c7a140297506">
1. Data
</li>
<p class="NarrativeText" id="52c2b4b09c228b90a487fa4fd42a1590">
The dataset contains 60 different problem instances of the multiple depot vehicle scheduling pro- blem (MDVSP). Each problem instance is provided in a separate file. Each file is named as RN-m-n-k.dat, where m, n, and k denote the number of depots, the number of trips, and the instance number RN-81500-01.dat, for is the first problem instance with 8 depots and 1500 trips. For the number of depots, m, we used three values, 8,12, and 16. The four values for the number of trips, n, are 1500, 2000, 2500, and 3000. For each size, ðm;nÞ, five instances are provided. The dataset can be downloaded from https://orlib.uqcloud.net.
</p>
<p class="UncategorizedText" id="a442f6b8548f2b2be7eb0b0c488eaf3f">
ðm;nÞ,
</p>
<p class="UncategorizedText" id="a1d0fff4ecc99ed0b3792f63af7ac732">
the size,
</p>
<p class="UncategorizedText" id="18ddc61212b977693c3ab4a9e2a98213">
respectively. For example,
</p>
<p class="UncategorizedText" id="f5af2f4ccedef8e9c9222943207ddce1">
the problem instance,
</p>
<p class="NarrativeText" id="20a5ace34ab61e08b1ab35c222c6554f">
For each problem instance, the following information is provided: The number of depots mð The number of trips ðnÞ, The number of locations ðlÞ, The number of vehicles at each depot, For each trip iA1;2;…;n, a start time, ts
</p>
<p class="UncategorizedText" id="f1d7de16fe466b5c9f0396600da6d3ef">
Þ,
</p>
<h1 class="Title" id="d07db900a92fbc399e2eac5e0fc704ee">
i , a start location, ls
</h1>
<h1 class="Title" id="812eeb4f274baf14170f2447204a4a55">
i, an end time, te
</h1>
<p class="UncategorizedText" id="4b917219b5939da4a52a907db733f551">
i, and an end location, le i ,
</p>
<h1 class="Title" id="84e91ae08f7e4ae8996bb4cdbbfb9e32">
and
</h1>
<p class="NarrativeText" id="b1bb94d45fba27ddeefd146fbde1dcc4">
(cid:2) The travel time, δij, between any two locations i;jA1;…;l.
</p>
<p class="NarrativeText" id="5e73cd663ab2449350114f86e23f6bbb">
All times are in minutes and integers. The planning duration is from 5 a.m. to around midnight. Each instance has two classes of trips, short trips and long trips, with 40% short trips and 60% long trips. The duration of a short trip is less than a total of 45 min and the travel time between the start
</p>
<p class="UncategorizedText" id="87149858e00c98f10a2b08be1b8d584a">
486
</p>
<div class="Header" id="5fc26c03275c46c5eb2ae66c0c288d2b">
S. Kulkarni et al. / Data in Brief 22 (2019) 484487
</div>
<p class="NarrativeText" id="eeba8dd874b520a36aa718db99dbfd38">
and end location of the trip. A long trip is about 35 h in duration and has the same start and end location. For all instances, mrl and the locations 1;…;m correspond to depots, while the remaining locations only appear as trip start and end locations.
</p>
<p class="NarrativeText" id="36bb62577b390f929d88ed7d004c1e3e">
i þδ
</p>
<p class="NarrativeText" id="c4a028a7e5a91a69b88a778ed1d4c4c1">
. If le i ls le i j, otherwise, the vehicle may require waiting at le i for the duration of ðts
</p>
<h1 class="Title" id="3351f34f87afe9cffe4fd31320b9ccc8">
Zte
</h1>
<h1 class="Title" id="7a378649c353830c59db2e86df7f7368">
als
</h1>
<p class="NarrativeText" id="5066fe5d8ca5d5f91f7312ec35a9a7e8">
A trip j can be covered after trip i by the same vehicle, if ts j
</p>
<p class="NarrativeText" id="f7296ef349382c5db6f8a271d8f3fe03">
j, the vehicle must travel empty from le j (cid:3)te i Þ. A schedule is given by the sequence in which a vehicle can cover the trips. The MDVSP is to determine the minimum number of schedules to cover all trips that minimizes total time in waiting and empty travel. The following requirements must be satisfied:
</p>
<h1 class="Title" id="871530d7bbaa529bbc177fc2a041720e">
j
</h1>
<p class="NarrativeText" id="bfd40d52e047822b7bc341a4741f1f73">
i to ls
</p>
<li class="ListItem" id="a8f50afa154ed8c4545362eeb8ca5799">
1. Each schedule should start and end at the same depot. 2. Each trip should be covered by only one vehicle. 3. The number of schedules that start from a depot should not exceed the number of vehicles at the depot.
</li>
<p class="NarrativeText" id="3dbb489d8594d6744d2fce9cdcde691c">
A sufficient number of vehicles are provided to maintain the feasibility of an instance. For each instance size ðm;nÞ, Table 1 provides the average of the number of locations, the number of times, the number of vehicles, and the number of possible empty travels, over five instances. The number of locations includes m distinct locations for depots and the number of locations at which various trips start or end. The number of times includes the start and the end time of the planning horizon and the start/end times for the trips. The number of vehicles is the total number of vehicles from all the depots. The number of possible empty travels is the number of possible connections between trips that require a vehicle travelling empty between two consecutive trips in a schedule.
</p>
<p class="NarrativeText" id="7490a379155c95007ad9649ec7689e35">
The description of the file for each problem instance is presented in Table 2. The first line in the file provides the number of depots ðmÞ, the number of trips, ðnÞ, and the number of locations ðlÞ, in the problem instance. The next n lines present the information for n trips. Each line corresponds to a trip, iA 1;…;n g, and provides the start location, the start time, the end location, and the end time of trip i. The next l lines present the travel times between any two locations, i;jA 1;…;l
</p>
<h1 class="Title" id="924fc12bebb375f9c74313489cf16217">
f
</h1>
<p class="UncategorizedText" id="028c5c64e9591944e620e8308f516b5a">
(cid:1)
</p>
<p class="UncategorizedText" id="ce73daceb6d992f6af62cceb4a3d424f">
(cid:3)
</p>
<p class="UncategorizedText" id="4c3e98e95e0007df7a9e116f5df403c8">
.
</p>
<p class="NarrativeText" id="0b37e732b73efa9dbd994f164dac8d5c">
The dataset also includes a program GenerateInstance.cpp that can be used to generate new instances. The program takes three inputs, the number of depots ðmÞ, the number of trips ðnÞ, and the number of instances for each size ðm;nÞ.
</p>
<p class="UncategorizedText" id="155c4752aa12e6b82164f5ac49103a19">
Table 1 Average number of locations, times, vehicles and empty travels for each instance size.
</p>
<h1 class="Title" id="6d92abd137f1e1a6f7d9ecfa1edb0cf4">
Instance size (m, n)
</h1>
<h1 class="Title" id="bcd163c5719297fd86b9eebacf8a9c24">
Average number of
</h1>
<h1 class="Title" id="204a9747099a8efd4aa0b05c9e5c38d2">
Locations
</h1>
<h1 class="Title" id="327cb3d0fb60857fee3d8f0c2c78d613">
Times
</h1>
<h1 class="Title" id="6592bb72dcd3912aa6fabc3df525aeda">
Vehicles
</h1>
<h1 class="Title" id="80ce4476651a7ac735c554343aeb749f">
Possible empty travels
</h1>
<p class="UncategorizedText" id="71a7492ba9c12eef52065aabaebc3a7c">
(8, 1500) (8, 2000) (8, 2500) (8, 3000) (12, 1500) (12, 2000) (12, 2500) (12, 3000) (16, 1500) (16, 2000) (16, 2500) (16, 3000)
</p>
<p class="UncategorizedText" id="7701857f59bdba5844b24edc32749d05">
568.40 672.80 923.40 977.00 566.00 732.60 875.00 1119.60 581.80 778.00 879.00 1087.20
</p>
<p class="UncategorizedText" id="2bf95679e315fbbd9f0ceb0ce36d9197">
975.20 1048.00 1078.00 1113.20 994.00 1040.60 1081.00 1107.40 985.40 1040.60 1083.20 1101.60
</p>
<p class="UncategorizedText" id="da4ae500af3e46e7446a28cddd32679c">
652.20 857.20 1082.40 1272.80 642.00 861.20 1096.00 1286.20 667.80 872.40 1076.40 1284.60
</p>
<p class="UncategorizedText" id="e21d6005188c8a7bfcb95e42868b986c">
668,279.40 1,195,844.80 1,866,175.20 2,705,617.00 674,191.00 1,199,659.80 1,878,745.20 2,711,180.40 673,585.80 1,200,560.80 1,879,387.00 2,684,983.60
</p>
<div class="Header" id="fa23407a7c3c99ae3b6fb79034698807">
S. Kulkarni et al. / Data in Brief 22 (2019) 484487
</div>
<h1 class="Title" id="0a4152d3ee312a3d28cc2b63d6f59a6e">
Table 2 Description of file format for each problem instance.
</h1>
<h1 class="Title" id="d66486bdc6e5b4d6e2018f7da6d0b0d0">
Number of lines
</h1>
<h1 class="Title" id="6c56043a98b068693db3cd6ded0bc020">
Number of columns in each line
</h1>
<h1 class="Title" id="2fc6800b1896d3d2779ee6e98794bdb1">
Description
</h1>
<p class="UncategorizedText" id="a5efd069cfcb8d3c983dfab2b9336b0e">
1 1 n
</p>
<h1 class="Title" id="1d96bbba9ffa9a12e81da0426f80a9fc">
l
</h1>
<p class="UncategorizedText" id="25f80b4c6652f9af1a6883a6e4b8c0bb">
3 m 4
</p>
<h1 class="Title" id="516ec572955aa07f031d27cc89008615">
l
</h1>
<p class="NarrativeText" id="c981c256386d57e68a2c947147f30229">
The number of depots, the number of trips, and the number of locations. The number of vehicles rd at each depot d. One line for each trip, i ¼ 1;2;…;n. Each line provides the start location ls time ts i and the end time te i for the corresponding trip. Each element, δij; where i;jA1;2;…;l, refers to the travel time between location i and location j.
</p>
<h1 class="Title" id="e6e8997790263be5ca103754ee56e234">
i, the start
</h1>
<h1 class="Title" id="49f536ed0f91f7e6d8ad1d70d71991b0">
i, the end location le
</h1>
<li class="ListItem" id="0f605e650a81abc6b5a30423d60d0975">
2. Experimental design, materials, and methods
</li>
<p class="NarrativeText" id="37200c447b8f7e1443b707c1e76e66b0">
The procedure presented by Carpaneto et al. in [1] is used to generate the problem instances. The same procedure has been used by Pepin et al. in [4] to generate the benchmark dataset of the MDVSP. A detailed description of the procedure is presented in [3].
</p>
<p class="NarrativeText" id="92e466c917445c0d473eea592acc3b72">
Our dataset provides start/end location and time of trips as well as the travel time between any two locations. The location and time information is required to model the MDVSP on a time-space network. The feasible connections and the cost of connections between the trips can be obtained as discussed in [3]. Thus, the dataset has all the information that is required to model the MDVSP on the time-space network (see [2]) as well as the connection-network (see [5]). The benchmark solutions for all the problem instances are presented in [3].
</p>
<p class="NarrativeText" id="d89dfb5247b731abfe90aedc46c09806">
Transparency document. Supporting information
</p>
<p class="NarrativeText" id="9a157bb2a3ee3ac55ecf743df0020ce9">
Transparency document associated with this article can be found in the online version at https://doi.
</p>
<p class="UncategorizedText" id="fb1ccb68103598fae7cc8128c97711d9">
org/10.1016/j.dib.2018.12.055.
</p>
<h1 class="Title" id="a63064fd9987765c33c9d20047dc2f15">
References
</h1>
<p class="NarrativeText" id="909007a841d32eb20886f7fc2d923911">
[1] G. Carpaneto, M. Dell'Amico, M. Fischetti, P. Toth, A branch and bound algorithm for the multiple depot vehicle scheduling
</p>
<p class="UncategorizedText" id="b1902a32b19337484e93efd9509a07c1">
problem, Networks 19 (5) (1989) 531548.
</p>
<p class="NarrativeText" id="5a7cc4a5afb4c97c546a3b64cb4f593f">
[2] N. Kliewer, T. Mellouli, L. Suhl, A timespace network based exact optimization model for multi-depot bus scheduling, Eur.
</p>
<p class="UncategorizedText" id="6a1cb7145ede91c5d2e6bb53b4d59f65">
J. Oper. Res. 175 (3) (2006) 16161627.
</p>
<p class="UncategorizedText" id="439a02aad982d445100cc246cd066b53">
[3] S. Kulkarni, M. Krishnamoorthy, A. Ranade, A.T. Ernst, R. Patil, A new formulation and a column generation-based heuristic
</p>
<p class="NarrativeText" id="46a8bd54aa6c1bd32118f4a681faaec9">
for the multiple depot vehicle scheduling problem, Transp. Res. Part B Methodol. 118 (2018) 457487.
</p>
<p class="NarrativeText" id="f60e59177f5f0e53e3f285fa68a8e3ef">
[4] A.S. Pepin, G. Desaulniers, A. Hertz, D. Huisman, A comparison of five heuristics for the multiple depot vehicle scheduling
</p>
<p class="UncategorizedText" id="0f8229a10050ec65ae5b6f9f66c6ca47">
problem, J. Sched. 12 (1) (2009) 17.
</p>
<p class="UncategorizedText" id="9f411677c0a8ddb06047e600b348e282">
[5] C.C. Ribeiro, F. Soumis, A column generation approach to the multiple-depot vehicle scheduling problem, Oper. Res. 42 (1)
</p>
<p class="UncategorizedText" id="e37f78c7271830eb805f560368fec7cc">
(1994) 4152.
</p>
<p class="UncategorizedText" id="94e316e08a4a19eed59d29d5d58703ce">
487
</p>
</body>
</html>

View File

@ -1,53 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<title>
</title>
</head>
<body>
<div class="Header" id="13c2cd4a987063cb9fe6802f8d9d8bba">
S32
</div>
<p class="NarrativeText" id="6e95de55fbc805ac11d5e168881e41eb">
ns; 40 mg/day=3.6%, p&lt;0.05; 80 mg/day=4.9%, p&lt;0.01; 120 mg/day=9.3%, p&lt;0.001, PM dosing group: 20 mg/day=-0.4%, ns; 40 mg/day=2.8%, p&lt;0.05: 80 mg/day=0.2%, ns; 160 mg/day=5.8%, p&lt;0.05). There was no clear dose-dependent trend associated with nausea and RD was similar between AM and PM dosing group (AM dosing group: 20 mg/ day=0.2% ns; 40 mg/day=3.8%, p&lt;0.05; 80 mg/day=3.8%, ns; 120 mg/ day=6.6%, ns, PM dosing group: 20 mg/day=-1.6%, ns; 40 mg/day=-1.7%, ns; 80 mg/day=5.5%, p&lt;0.01; 160 mg/day=2.8%, ns). Discussion: The risk of adverse events in the treatment of schizophrenia with lurasidone can vary depending on the timing of administration. In particular, for akathisia and somnolence, the incidence risks were reduced when lurasidone was administered in PM. Unlike with AM administration, the dose-dependence in the risks of these adverse events were not observed in lurasidone PM administration. The timing of lurasidone administration could be considered in effort to minimize potential adverse events.
</p>
<p class="UncategorizedText" id="c0ad446ac0e663713724aa5f42d20448">
S6. SLEEP ENDOPHENOTYPES OF SCHIZOPHRENIA: A HIGH-DENSITY EEG STUDY IN DRUG-NAÏVE, FIRST EPISODE PSYCHOSIS PATIENTS
</p>
<p class="UncategorizedText" id="21facf77763c3e990a3db1b8626c133a">
Anna Castelnovo1, Cecilia Casetta2, Francesco Donati3, Renata del Giudice3, Caroline Zangani3, Simone Sarasso3, Armando DAgostino*3 1Faculty of Biomedical Sciences, Università della Svizzera Italiana, Switzerland; 2Institute of Psychiatry, Psychology and Neuroscience, Kings College London, England; 3Università degli Studi di Milano, Italy
</p>
<p class="NarrativeText" id="26b6989522e94c2c7ef5c2633e41cf72">
Background: Slow waves, the hallmark of the deep nonrapid eye move- ment sleep electroencephalogram (EEG), are critical for restorative sleep and brain plasticity. They arise from the synchronous depolarization and hyperpolarization of millions of cortical neurons and their proper gen- eration and propagation relies upon the integrity of widespread cortico- thalamic networks. Slow wave abnormalities have been reported in patient with Schizophrenia, although with partially contradictory results, probably related to antipsychotic and sedative medications. Recently, their presence and delineation, have been convincingly shown in first-episode psychosis patients (FEP). However, clear evidence of this biomarker at the onset of the disease, prior to any psychopharmacological intervention, remains limited. Moreover, no attempt has been made to elucidate the prognostic meaning of this finding. Methods: We collected whole night sleep highdensity electroencephalog- raphy recordings (64-channel BrainAmp, Brain Products GmbH, Gilching, Germany) in 20 drug-naive FEP patients and 20 healthy control subjects (HC). Several clinical psychometric scales as well as neurocognitive tests were administered to all subjects in order to better define psychopatholog- ical status and vulnerability. EEG slow wave activity (SWA, spectral power between 1 and 4 Hz) and several slow wave parameters were computed at each electrode location, including density and amplitude, at each electrode location. Along with a group analysis between FEP and HC, a subgroup analysis was also computed between patients who showed a progression of symptoms to full-blown Schizophrenia (SCZ, n = 10) over the next 12-month follow-up and those who did not (OTH, n = 10). Results: Sleep macro-architecture was globally preserved in FEP patients. SWA (14 Hz) was lower in FEP compared to HC but this difference didnt reach statistical significance. Slow wave density was decreased in FEP compared to HC, with a significance that survived multiple comparison correction over a large fronto-central cluster. Mean amplitude was pre- served. At the subgroup analysis, these results were largely driven by the subgroup of patients with a confirmed diagnosis of SCZ at a 12-month fol- low-up. Indeed, no difference could be found between OTH and HC, while a strong significance was still evident between SCZ and HC.
</p>
<div class="Footer" id="b38798d4ed1cda1c49ed2db924d40039">
SIRS 2020 Abstracts
</div>
<div class="Header" id="6681a3fc2e2bbc7efabbf221baaeec6b">
Poster Session I
</div>
<p class="NarrativeText" id="418368d1fe238e68fc6c8663f7485649">
Discussion: Our data confirm previous findings on reduced slow wave density in FEP, and expand them to acute subjects, before any treatment is prescribed. This is in line with available data on diffuse abnormalities of cortico-cortical and cortico-thalamic networks in these patients. Interestingly, our data also offer preliminary evidence that this deficit is specific for SCZ, as it appears to differentiate patients who developed SCZ from those with other diagnoses at follow-up. Given the traveling properties of slow waves, future research should establish their potential as markers of connectivity in SCZ.
</p>
<p class="UncategorizedText" id="2693595cd6fc5be02dc752b089f85eea">
S7. INVESTIGATING THE LINK BETWEEN THE PERIPHERAL ENDOCANNABINOID SYSTEM AND CENTRAL GLUTAMATERGIC NEUROTRANSMISSION IN EARLY PSYCHOSIS: A 7T-MRS STUDY
</p>
<p class="UncategorizedText" id="3f2d8de4445801a7562416267c06a877">
Amedeo Minichino*1, Beata Godlewska1, Philip Cowen1, Philip Burnet1, Belinda Lennox1 1University of Oxford
</p>
<p class="NarrativeText" id="741c946db28df5068fb60063dad37d27">
Background: Meta-analytic evidence showed increased levels of periph- eral endocannabinoid metabolites in psychotic illness. Alterations in the endocannabinoid system are believed to compromise glutamate and do- pamine transmission, which play a central role in pathophysiological models of psychosis. I will present preliminary data from an ongoing high-field proton magnetic resonance spectroscopy (MRS) study aimed at investigating the association between peripheral levels of endocannabinoid system metabolites and central glutamate metabolism in individuals at their first non-affective psychotic episode (NA-FEP) and healthy controls. Methods: We expect to recruit 17 NA-FEP and 20 healthy controls by January 2020. Currently, we recruited 12 NA-FEP and 18 healthy controls from two different research facilities (Imperial College London and University of Oxford) as part of a cross-sectional study. Participants un- derwent MRS scanning at 7-T with voxels placed in right dorsolateral prefrontal cortex (right-DLPFC), anterior cingulate cortex (ACC), and oc- cipital cortex. Neuro-metabolites will be calculated using the unsuppressed water signal as reference. Endocannabinoid metabolites were quantified from serum samples, collected during the same imaging session. Results: Analyses are ongoing. Based on previous evidence, expected findings are: (i) reduced glutamate levels in the ACC and right-DLPFC of NA-FEP compared to controls; (ii) increased peripheral endocannabinoid metabolites in NA-FEP compared to controls; and (iii) inverse association between peripheral endocannabinoid metabolites and glutamate levels in ACC and right-DLPFC in NA-FEP Discussion: This study will help clarifying the contribution of peripheral endocannabinoid system to central brain mechanisms of key relevance for psychotic illness. It will also add further evidence on the limited literature on high-resolution characterisation of brain metabolites in early psychosis. Strengths of the study include: (i) use of high-field MRS, which allows the estimation of glutamate-related compounds at higher precision than at lower field strength; (ii) reduced heterogeneity of the clinical sample (only male and NA-FEP). Limitations: small sample size and cross-sectional design.
</p>
<p class="UncategorizedText" id="c1543aee0d7efb59052757f7b83a70a9">
S8. GRIN1 PROMOTER METHYLATION CHANGES IN BLOOD OF EARLY-ONSET PSYCHOTIC PATIENTS AND UNAFFECTED SIBLINGS WITH CHILDHOOD TRAUMA
</p>
<p class="UncategorizedText" id="5afb27a02de3e7a95c0f2fa442e32526">
Camila Loureiro*1, Corsi-Zuelli Fabiana1, Fachim Helene Aparecida1, Shuhama Rosana1, Menezes Paulo Rossi1, Dalton Caroline F2,
</p>
<h1 class="Title" id="0d80b62dd72121dd5263df8605849cf4">
AQ3
</h1>
</body>
</html>