feat: round numbers to reduce undeterministic behavior (#3740)

This PR rounds the floating point number associated with coordinates in
`pdfminer_processing.py`. This helps to eliminate machine precision
caused randomness in bounding box overlap detection. Currently the
rounding is set to the nearest machine precision for `np.float32` using
`np.finfo(float)`, which yields resolution = `1e-15`.

## future work

We should reduce the rounding to only 6 digits after floating point
since the data type `float32` has a resolution of only `1e-6`. However
it would break tests. A followup is required to tune the threshold
values in `pdfminer_processing.py` so that it works with `1e-6`
resolution.
This commit is contained in:
Yao You 2024-10-21 13:15:20 -05:00 committed by GitHub
parent 3240e3d17a
commit e764bc503c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 23 additions and 12 deletions

View File

@ -1,7 +1,9 @@
## 0.16.1-dev4
## 0.16.1-dev5
### Enhancements
* **Round coordinates** Round coordinates when computing bounding box overlaps in `pdfminer_processing.py` to nearest machine precision. This can help reduce underterministic behavior from machine precision that affects which bounding boxes to combine.
### Features
### Fixes

View File

@ -1 +1 @@
__version__ = "0.16.1-dev4" # pragma: no cover
__version__ = "0.16.1-dev5" # pragma: no cover

View File

@ -21,6 +21,8 @@ if TYPE_CHECKING:
EPSILON_AREA = 0.01
# rounding floating point to nearest machine precision
DEFAULT_ROUND = 15
def process_file_with_pdfminer(
@ -115,7 +117,7 @@ def _create_text_region(x1, y1, x2, y2, coef, text, source, region_class):
)
def get_coords_from_bboxes(bboxes) -> np.ndarray:
def get_coords_from_bboxes(bboxes, round_to: int = DEFAULT_ROUND) -> np.ndarray:
"""convert a list of boxes's coords into np array"""
# preallocate memory
coords = np.zeros((len(bboxes), 4), dtype=np.float32)
@ -123,11 +125,11 @@ def get_coords_from_bboxes(bboxes) -> np.ndarray:
for i, bbox in enumerate(bboxes):
coords[i, :] = [bbox.x1, bbox.y1, bbox.x2, bbox.y2]
return coords
return coords.round(round_to)
def areas_of_boxes_and_intersection_area(
coords1: np.ndarray, coords2: np.ndarray, threshold: float = 0.5
coords1: np.ndarray, coords2: np.ndarray, round_to: int = DEFAULT_ROUND
):
"""compute intersection area and own areas for two groups of bounding boxes"""
x11, y11, x12, y12 = np.split(coords1, 4, axis=1)
@ -139,26 +141,33 @@ def areas_of_boxes_and_intersection_area(
boxa_area = (x12 - x11 + 1) * (y12 - y11 + 1)
boxb_area = (x22 - x21 + 1) * (y22 - y21 + 1)
return inter_area, boxa_area, boxb_area
return inter_area.round(round_to), boxa_area.round(round_to), boxb_area.round(round_to)
def bboxes1_is_almost_subregion_of_bboxes2(bboxes1, bboxes2, threshold: float = 0.5) -> np.ndarray:
def bboxes1_is_almost_subregion_of_bboxes2(
bboxes1, bboxes2, threshold: float = 0.5, round_to: int = DEFAULT_ROUND
) -> np.ndarray:
"""compute if each element from bboxes1 is almost a subregion of one or more elements in
bboxes2"""
coords1, coords2 = get_coords_from_bboxes(bboxes1), get_coords_from_bboxes(bboxes2)
coords1 = get_coords_from_bboxes(bboxes1, round_to=round_to)
coords2 = get_coords_from_bboxes(bboxes2, round_to=round_to)
inter_area, boxa_area, boxb_area = areas_of_boxes_and_intersection_area(coords1, coords2)
inter_area, boxa_area, boxb_area = areas_of_boxes_and_intersection_area(
coords1, coords2, round_to=round_to
)
return (inter_area / np.maximum(boxa_area, EPSILON_AREA) > threshold) & (
boxa_area <= boxb_area.T
)
def boxes_self_iou(bboxes, threshold: float = 0.5) -> np.ndarray:
def boxes_self_iou(bboxes, threshold: float = 0.5, round_to: int = DEFAULT_ROUND) -> np.ndarray:
"""compute iou for a group of elements"""
coords = get_coords_from_bboxes(bboxes)
coords = get_coords_from_bboxes(bboxes, round_to=round_to)
inter_area, boxa_area, boxb_area = areas_of_boxes_and_intersection_area(coords, coords)
inter_area, boxa_area, boxb_area = areas_of_boxes_and_intersection_area(
coords, coords, round_to=round_to
)
return (inter_area / np.maximum(EPSILON_AREA, boxa_area + boxb_area.T - inter_area)) > threshold