This PR removes usage of `PageLayout.elements` from partition function,
except for when `analysis=True`. This PR updates the partition logic so
that `PageLayout.elements_array` is used everywhere to save memory and
cpu cost.
Since the analysis function is intended for investigation and not for
general document processing purposes, this part of the code is left for
a future refactor.
`PageLayout.elements` uses a list to store layout elements' data while
`elements_array` uses `numpy` array to store the data, which has much
lower memory requirements. Using `memory_profiler` to test the
differences is usually around 10x.
This pull request adds the ability to configure multiple pdfminer
parameters (with the simple possibility to extend for the additional
parameters). One of the parameters overwrites the default from LA Params
config class.
Example:
```python3
partition(
filename=example_doc_path("pdf/layout-parser-paper-fast.pdf"),
pdfminer_line_margin=1.123,
pdfminer_char_margin=None,
pdfminer_line_overlap=0.0123,
pdfminer_word_margin=3.21,
)
assert pdfminer_mock.call_args.kwargs == {
"line_margin": 1.123,
"line_overlap": 0.0123,
"word_margin": 3.21,
}
```
---------
Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: plutasnyy <plutasnyy@users.noreply.github.com>
This PR refactors the data structure for `list[LayoutElement]` and
`list[TextRegion]` used in partition pdf/image files.
- new data structure replaces a list of objects with one object with
`numpy` array to store data
- this only affects partition internal steps and it doesn't change input
or output signature of `partition` function itself, i.e., `partition`
still returns `list[Element]`
- internally `list[LayoutElement]` -> `LayoutElements`;
`list[TextRegion]` -> `TextRegions`
- current refactor stops before clean up pdfminer elements inside
inferred layout elements -> the algorithm of clean up needs to be
refactored before the data structure refactor can move forward. So
current refactor converts the array data structure into list data
structure with `element_array.as_list()` call. This is the last step
before turning `list[LayoutElement]` into `list[Element]` as return
- a future PR will update this last step so that we build
`list[Element]` from `LayoutElements` data structure instead.
The goal of this PR is to replace the data structure as much as possible
without changing underlying logic. There are a few places where the
slicing or filtering logic was simple enough to be converted into vector
data structure operations. Those are refactored to be vector based. As a
result there is some small improvements observed in ingest test. This is
likely because the vector operations cleaned up some previous
inconsistency in data types and operations.
---------
Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: badGarnet <badGarnet@users.noreply.github.com>
This PR enhances `pdfminer` image cleanup process by repositioning the
duplicate image removal step. It optimizes the removal of duplicated
pdfminer images by performing the cleanup before merging elements,
rather than after. This improvement reduces execution time and enhances
the overall processing speed of PDF documents.
---------
Co-authored-by: Yao You <theyaoyou@gmail.com>
This PR implements splitting of `pdfminer` elements (`groups of text
chunks`) into smaller bounding boxes (`text lines`). This implementation
prevents loss of information from the object detection model and
facilitates more effective removal of duplicated `pdfminer` text. This
PR also addresses #3430.
---------
Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: christinestraub <christinestraub@users.noreply.github.com>
This PR vectorizes the computation of element overlap to speed up
deduplication process of extracted elements.
## test
This PR adds unit test to the new vectorized IOU and subregion
computation functions.
In addition, running partition on large files with many elements like
this slide:
[002489.pdf](https://github.com/user-attachments/files/16823176/002489.pdf)
shows a reduction of runtime from around 15min on the main branch to
less than 4min with this branch.
Profiling results show that the new implementation greatly reduces the
time cost of computation and now most of the time is spend on getting
the coordinates from a list of bboxes.

This PR adds the ability to fill inferred elements text from embedded
text (`pdfminer`) without depending on `unstructured-inference` library.
This PR is the second part of moving embedded text related code from
`unstructured-inference` to `unstructured` and works together with
https://github.com/Unstructured-IO/unstructured-inference/pull/349.
This PR aims to remove duplicate embedded images taken by `PDFminer`.
### Summary
- add `clean_pdfminer_duplicate_image_elements()` to remove embedded
images with similar `bboxes` and the same `text`
- add env_config `EMBEDDED_IMAGE_SAME_REGION_THRESHOLD` to consider the
bounding boxes of two embedded images as the same region
- refactor: reorganzie `clean_pdfminer_inner_elements()`