321 Commits

Author SHA1 Message Date
rvztz
7fd61e3a7f
Adds data source properties to git connectors (#1280)
Adds data source properties to git connectors:
-  data_created
-  date_modified
-  version
-  record_locator
These properties are instantiated when supported by the connector.

Separates the logic between fetching the file from source and
`get_file`. Retrieves file metadata when any of the properties are
called.

Adds logic to check if file exists in the remote source. For connectors
that don't directly support it, adds exception handling to check any
issues while retrieving the file.

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: rvztz <rvztz@users.noreply.github.com>
2023-10-10 22:56:56 +00:00
Roman Isecke
b38a6b3022
feat: add Notion connector retry strategy (#1492)
### Description
In order to add a retry strategy to the notion http calls, leveraging a
generic backoff library with some tweaks to pass in values from the CLI.
2023-10-10 17:41:18 +00:00
ryannikolaidis
3e101d3e4f
build(test): skip full python matrix for most ingest tests (#1687)
We’re probably unfairly (to the test) making a large volume of new
connections and requests to test services when all of our ingest tests
run across the full python test matrix and when a lot of PRs a firing at
once. Lets limit the full matrix run to a select few, but still have all
ingest tests run on python v3.10. This is done by checking the version
and skipping in ingest-test.sh.

Bonus: Bumps ingest test fixture workflow to use 3.10. This technically
shouldn't make a difference, but since we're making 3.10 the default of
the matrix strategy, it probably makes sense to use 3.10 for the ingest
fixture generation as well for consistency.

## Testing
-
[example](https://github.com/Unstructured-IO/unstructured/actions/runs/6460319121/job/17537900978?pr=1687)
running all tests in 3.10
-
[example](https://github.com/Unstructured-IO/unstructured/actions/runs/6460319121/job/17537899999?pr=1687)
skipping/running the expected tests in 3.8
2023-10-10 16:39:34 +00:00
David Potter
8b93217a33
built(test): exclude version metadata from google drive test (#1682) 2023-10-07 19:34:32 -07:00
cragwolfe
46cb1b642a
chore: don't cleanup ingest test outputs (non-CI) (#1680)
When running test-ingest test fixtures locally (but not in CI), keep
output .json's and other workdir artifacts around for the convenience of
debugging.

**Test Instructions**

Run 

    bash -x ./test_unstructured_ingest/test-ingest-azure.sh

and witness output .json's are visible. Yay! Now, to instead clean up
output .json's and workdir, run:

UNSTRUCTURED_CLEANUP_DEV_FIXTURES=1 bash -x
./test_unstructured_ingest/test-ingest-azure.sh
    
and witness the files have been cleaned up. Yay!
2023-10-07 02:18:37 +00:00
Yuming Long
dcd6d0ff67
Refactor: support entire page OCR with ocr_mode and ocr_languages (#1579)
## Summary
Second part of OCR refactor to move it from inference repo to
unstructured repo, first part is done in
https://github.com/Unstructured-IO/unstructured-inference/pull/231. This
PR adds OCR process logics to entire page OCR, and support two OCR
modes, "entire_page" or "individual_blocks".

The updated workflow for `Hi_res` partition:
* pass the document as data/filename to inference repo to get
`inferred_layout` (DocumentLayout)
* pass the document as data/filename to OCR module, which first open the
document (create temp file/dir as needed), and split the document by
pages (convert PDF pages to image pages for PDF file)
* if ocr mode is `"entire_page"`
    *  OCR the entire image
    * merge the OCR layout with inferred page layout
 * if ocr mode is `"individual_blocks"`
* from inferred page layout, find element with no extracted text, crop
the entire image by the bboxes of the element
* replace empty text element with the text obtained from OCR the cropped
image
* return all merged PageLayouts and form a DocumentLayout subject for
later on process

This PR also bump `unstructured-inference==0.7.2` since the branch relay
on OCR refactor from unstructured-inference.
  
## Test
```
from unstructured.partition.auto import partition

entrie_page_ocr_mode_elements = partition(filename="example-docs/english-and-korean.png", ocr_mode="entire_page", ocr_languages="eng+kor", strategy="hi_res")
individual_blocks_ocr_mode_elements = partition(filename="example-docs/english-and-korean.png", ocr_mode="individual_blocks", ocr_languages="eng+kor", strategy="hi_res")
print([el.text for el in entrie_page_ocr_mode_elements])
print([el.text for el in individual_blocks_ocr_mode_elements])
```
latest output:
```
# entrie_page
['RULES AND INSTRUCTIONS 1. Template for day 1 (korean) , for day 2 (English) for day 3 both English and korean. 2. Use all your accounts. use different emails to send. Its better to have many email', 'accounts.', 'Note: Remember to write your own "OPENING MESSAGE" before you copy and paste the template. please always include [TREASURE HARUTO] for example:', '안녕하세요, 저 희 는 YGEAS 그룹 TREASUREWH HARUTOM|2] 팬 입니다. 팬 으 로서, HARUTO 씨 받 는 대 우 에 대해 의 구 심 과 불 공 평 함 을 LRU, 이 일 을 통해 저 희 의 의 혹 을 전 달 하여 귀 사 의 진지한 민 과 적극적인 답 변 을 받을 수 있 기 를 바랍니다.', '3. CC Harutonations@gmail.com so we can keep track of how many emails were', 'successfully sent', '4. Use the hashtag of Haruto on your tweet to show that vou have sent vour email]', '메 고']
# individual_blocks
['RULES AND INSTRUCTIONS 1. Template for day 1 (korean) , for day 2 (English) for day 3 both English and korean. 2. Use all your accounts. use different emails to send. Its better to have many email', 'Note: Remember to write your own "OPENING MESSAGE" before you copy and paste the template. please always include [TREASURE HARUTO] for example:', '안녕하세요, 저 희 는 YGEAS 그룹 TREASURES HARUTOM| 2] 팬 입니다. 팬 으로서, HARUTO 씨 받 는 대 우 에 대해 의 구 심 과 habe ERO, 이 머 일 을 적극 저 희 의 ASS 전 달 하여 귀 사 의 진지한 고 2 있 기 를 바랍니다.', '3. CC Harutonations@gmail.com so we can keep track of how many emails were ciiccecefisliy cant', 'VULLESSIULY Set 4. Use the hashtag of Haruto on your tweet to show that you have sent your email']
```

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: yuming-long <yuming-long@users.noreply.github.com>
Co-authored-by: christinestraub <christinemstraub@gmail.com>
Co-authored-by: christinestraub <christinestraub@users.noreply.github.com>
2023-10-06 22:54:49 +00:00
Roman Isecke
2e1404e02c
refactor: unstructured ingest as a pipeline (#1551)
### Description
As we add more and more steps to the pipeline (i.e. chunking, embedding,
table manipulation), it would help seperate the responsibility of each
of these into their own processes, running each in parallel using json
files to share data across. This will also help guarantee data is
serializable if this code was used in an actual pipeline. Following is a
flow diagram of the proposed changes. As part of this change:
* A parent pipeline class will be responsible for running each `node`,
which can optionally be run via multiprocessing if it supports it, or
not. Possible nodes at this moment:
  * Doc factory: creates all the ingest docs via the source connector
* Source: reads/downloads all of the content to process to the local
filesystem to the location set by the `download_dir` parameter.
* Partition: runs partition on all of the downloaded content in json
format.
* Any number of reformat nodes that modify the partitioned content. This
can include chunking, embedding, etc.
* Write: push the final json into the destination via the destination
connector
* This pipeline relies on the information of the ingest docs to be
available via their serialization. An optimization was introduced with
the `IngestDocJsonMixin` which adds in all the `@property` fields to the
serialized json already being created via the `DataClassJsonMixin`
* For all intermediate steps (partitioning, reformatting), the content
is saved to a dedicated location on the local filesystem. Right now it's
set to `$HOME/.cache/unstructured/ingest/pipeline/STEP_NAME/`.
* Minor changes: made sense to move some of the config parameters
between the read and partition configs when I explicitly divided the
responsibility to download vs partition the content in the pipeline.
* The pipeline class only makes the doc factory, source and partition
nodes required, keeping with the logic that has been supported so far.
All reformatting nodes and write node are optional.
* Long term, there should also be some changes to the base configs
supported by the CLI to support pipeline specific configs, but for now
what exists was used to minimize changes in this PR.
* Final step to copy the final output to the location designated by the
`_output_filename` value of the ingest doc.
* Hashing occurs at each step by hashing the parameters of that step
(i.e. partition configs) along with the previous step via the filename
used. This allows each step to be the same _if_ all the parameters for
it have not changed and the content so far is the same.
* The only data that is shared and has writes to across processes is the
dictionary of ingest json data. This dict is created using the
`multiprocessing.manager.DictProxy` to make sure any interaction with it
is behind a lock.

### Minor refactors included:
* Utility methods added to extract configs from the click options
* Utility method to add common options to click commands.
* All writers moved to using the class approach which extracts a lot of
the common code so there's less copy-paste when new runners are added.
* Use `@property` for source metadata on base ingest doc to add logic to
call `update_source_metadata` if it's still `None` at the time it's
fetched.


### Additional bug fixes included
* Fsspec connectors were not serializable due to the `ingest_doc_cls`.
This was removed from the fields captured by the `@dataclass` decorator
and added in a `__post_init__` method.
* Various reddit connector params were missing. This doesn't have an
explicit ingest test at the moment so was never caught.
* Fsspec connector had the parent `update_source_metadata` misnamed as
`update_source_metadata_metadata` so it was never being called.

### Flow Diagram


![ingest_pipeline](https://github.com/Unstructured-IO/unstructured/assets/136338424/be485606-cfe0-4931-8b81-c2bf569cf1e2)
2023-10-06 18:49:29 +00:00
Christine Straub
5d14a2aea0
feat: shrink bboxes by top left (#1633)
Closes #1573.
### Summary
- update `shrink_bbox()` to keep top left rather than center
### Evaluation
Run the following command for this
[PDF](https://utic-dev-tech-fixtures.s3.us-east-2.amazonaws.com/pastebin/patent-11723901-page2.pdf).
```
PYTHONPATH=. python examples/custom-layout-order/evaluate_xy_cut_sorting.py <file_path> <strategy>
```

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
2023-10-06 05:16:11 +00:00
Christine Straub
b30d6a601e
Fix/1209 tweak xycut ordering output (#1630)
Closes GH Issue #1209.

### Summary
- add swapped `xycut` sorting
- update `xycut` sorting evaluation script

PDFs:
-
[sbaa031.073.pdf](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7234218/pdf/sbaa031.073.pdf)
-
[multi-column-2p.pdf](https://github.com/Unstructured-IO/unstructured/files/12796147/multi-column-2p.pdf)
-
[11723901.pdf](https://github.com/Unstructured-IO/unstructured-inference/files/12360085/11723901.pdf)
### Testing
```
elements = partition_pdf("sbaa031.073.pdf", strategy="hi_res")
print("\n\n".join([str(el) for el in elements]))
```
### Evaluation
```
PYTHONPATH=. python examples/custom-layout-order/evaluate_xy_cut_sorting.py sbaa031.073.pdf hi_res xycut_only
```
2023-10-05 07:41:38 +00:00
rvztz
6d8572d7d6
feat: Adds data source properties to the Jira connector (#1516) 2023-10-04 20:04:18 -07:00
Klaijan
0a65fc2134
feat: xlsx subtable extraction (#1585)
**Executive Summary**
Unstructured is now able to capture subtables, along with other text
element types within the `.xlsx` sheet.

**Technical Details**
- The function now reads the excel *without* header as default
- Leverages the connected components search to find subtables within the
sheet. This search is based on dfs search
- It also handle the overlapping table or text cases
- Row with only single cell of data is considered not a table, and
therefore passed on the determine the element type as text
- In connected elements, it is possible to have table title, header, or
footer. We run the count for the first non-single empty rows from top
and bottom to determine those text

**Result**
This table now reads as:
<img width="747" alt="image"
src="https://github.com/Unstructured-IO/unstructured/assets/2177850/6b8e6d01-4ca5-43f4-ae88-6104b0174ed2">

```
[
    {
        "type": "Title",
        "element_id": "3315afd97f7f2ebcd450e7c939878429",
        "metadata": {
            "filename": "vodafone.xlsx",
            "file_directory": "example-docs",
            "last_modified": "2023-10-03T17:51:34",
            "filetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
            "parent_id": "3315afd97f7f2ebcd450e7c939878429",
            "languages": [
                "spa",
                "ita"
            ],
            "page_number": 1,
            "page_name": "Index",
            "text_as_html": "<table border=\"1\" class=\"dataframe\">\n  <tbody>\n    <tr>\n      <td>Topic</td>\n      <td>Period</td>\n      <td></td>\n      <td></td>\n      <td>Page</td>\n    </tr>\n    <tr>\n      <td>Quarterly revenue</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>1</td>\n    </tr>\n    <tr>\n      <td>Group financial performance</td>\n      <td>FY 22</td>\n      <td>FY 23</td>\n      <td></td>\n      <td>2</td>\n    </tr>\n    <tr>\n      <td>Segmental results</td>\n      <td>FY 22</td>\n      <td>FY 23</td>\n      <td></td>\n      <td>3</td>\n    </tr>\n    <tr>\n      <td>Segmental analysis</td>\n      <td>FY 22</td>\n      <td>FY 23</td>\n      <td></td>\n      <td>4</td>\n    </tr>\n    <tr>\n      <td>Cash flow</td>\n      <td>FY 22</td>\n      <td>FY 23</td>\n      <td></td>\n      <td>5</td>\n    </tr>\n  </tbody>\n</table>"
        },
        "text": "Financial performance"
    },
    {
        "type": "Table",
        "element_id": "17f5d512705be6f8812e5dbb801ba727",
        "metadata": {
            "filename": "vodafone.xlsx",
            "file_directory": "example-docs",
            "last_modified": "2023-10-03T17:51:34",
            "filetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
            "parent_id": "3315afd97f7f2ebcd450e7c939878429",
            "languages": [
                "spa",
                "ita"
            ],
            "page_number": 1,
            "page_name": "Index",
            "text_as_html": "<table border=\"1\" class=\"dataframe\">\n  <tbody>\n    <tr>\n      <td>Topic</td>\n      <td>Period</td>\n      <td></td>\n      <td></td>\n      <td>Page</td>\n    </tr>\n    <tr>\n      <td>Quarterly revenue</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>1</td>\n    </tr>\n    <tr>\n      <td>Group financial performance</td>\n      <td>FY 22</td>\n      <td>FY 23</td>\n      <td></td>\n      <td>2</td>\n    </tr>\n    <tr>\n      <td>Segmental results</td>\n      <td>FY 22</td>\n      <td>FY 23</td>\n      <td></td>\n      <td>3</td>\n    </tr>\n    <tr>\n      <td>Segmental analysis</td>\n      <td>FY 22</td>\n      <td>FY 23</td>\n      <td></td>\n      <td>4</td>\n    </tr>\n    <tr>\n      <td>Cash flow</td>\n      <td>FY 22</td>\n      <td>FY 23</td>\n      <td></td>\n      <td>5</td>\n    </tr>\n  </tbody>\n</table>"
        },
        "text": "\n\n\nTopic\nPeriod\n\n\nPage\n\n\nQuarterly revenue\nNine quarters to 30 June 2023\n\n\n1\n\n\nGroup financial performance\nFY 22\nFY 23\n\n2\n\n\nSegmental results\nFY 22\nFY 23\n\n3\n\n\nSegmental analysis\nFY 22\nFY 23\n\n4\n\n\nCash flow\nFY 22\nFY 23\n\n5\n\n\n"
    },
    {
        "type": "Title",
        "element_id": "8a9db7161a02b427f8fda883656036e1",
        "metadata": {
            "filename": "vodafone.xlsx",
            "file_directory": "example-docs",
            "last_modified": "2023-10-03T17:51:34",
            "filetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
            "parent_id": "8a9db7161a02b427f8fda883656036e1",
            "languages": [
                "spa",
                "ita"
            ],
            "page_number": 1,
            "page_name": "Index",
            "text_as_html": "<table border=\"1\" class=\"dataframe\">\n  <tbody>\n    <tr>\n      <td>Topic</td>\n      <td>Period</td>\n      <td></td>\n      <td></td>\n      <td>Page</td>\n    </tr>\n    <tr>\n      <td>Mobile customers</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>6</td>\n    </tr>\n    <tr>\n      <td>Fixed broadband customers</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>7</td>\n    </tr>\n    <tr>\n      <td>Marketable homes passed</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>8</td>\n    </tr>\n    <tr>\n      <td>TV customers</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>9</td>\n    </tr>\n    <tr>\n      <td>Converged customers</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>10</td>\n    </tr>\n    <tr>\n      <td>Mobile churn</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>11</td>\n    </tr>\n    <tr>\n      <td>Mobile data usage</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>12</td>\n    </tr>\n    <tr>\n      <td>Mobile ARPU</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>13</td>\n    </tr>\n  </tbody>\n</table>"
        },
        "text": "Operational metrics"
    },
    {
        "type": "Table",
        "element_id": "d5d16f7bf9c7950cd45fae06e12e5847",
        "metadata": {
            "filename": "vodafone.xlsx",
            "file_directory": "example-docs",
            "last_modified": "2023-10-03T17:51:34",
            "filetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
            "parent_id": "8a9db7161a02b427f8fda883656036e1",
            "languages": [
                "spa",
                "ita"
            ],
            "page_number": 1,
            "page_name": "Index",
            "text_as_html": "<table border=\"1\" class=\"dataframe\">\n  <tbody>\n    <tr>\n      <td>Topic</td>\n      <td>Period</td>\n      <td></td>\n      <td></td>\n      <td>Page</td>\n    </tr>\n    <tr>\n      <td>Mobile customers</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>6</td>\n    </tr>\n    <tr>\n      <td>Fixed broadband customers</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>7</td>\n    </tr>\n    <tr>\n      <td>Marketable homes passed</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>8</td>\n    </tr>\n    <tr>\n      <td>TV customers</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>9</td>\n    </tr>\n    <tr>\n      <td>Converged customers</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>10</td>\n    </tr>\n    <tr>\n      <td>Mobile churn</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>11</td>\n    </tr>\n    <tr>\n      <td>Mobile data usage</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>12</td>\n    </tr>\n    <tr>\n      <td>Mobile ARPU</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>13</td>\n    </tr>\n  </tbody>\n</table>"
        },
        "text": "\n\n\nTopic\nPeriod\n\n\nPage\n\n\nMobile customers\nNine quarters to 30 June 2023\n\n\n6\n\n\nFixed broadband customers\nNine quarters to 30 June 2023\n\n\n7\n\n\nMarketable homes passed\nNine quarters to 30 June 2023\n\n\n8\n\n\nTV customers\nNine quarters to 30 June 2023\n\n\n9\n\n\nConverged customers\nNine quarters to 30 June 2023\n\n\n10\n\n\nMobile churn\nNine quarters to 30 June 2023\n\n\n11\n\n\nMobile data usage\nNine quarters to 30 June 2023\n\n\n12\n\n\nMobile ARPU\nNine quarters to 30 June 2023\n\n\n13\n\n\n"
    },
    {
        "type": "Title",
        "element_id": "f97e9da0e3b879f0a9df979ae260a5f7",
        "metadata": {
            "filename": "vodafone.xlsx",
            "file_directory": "example-docs",
            "last_modified": "2023-10-03T17:51:34",
            "filetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
            "parent_id": "f97e9da0e3b879f0a9df979ae260a5f7",
            "languages": [
                "spa",
                "ita"
            ],
            "page_number": 1,
            "page_name": "Index",
            "text_as_html": "<table border=\"1\" class=\"dataframe\">\n  <tbody>\n    <tr>\n      <td>Topic</td>\n      <td>Period</td>\n      <td></td>\n      <td></td>\n      <td>Page</td>\n    </tr>\n    <tr>\n      <td>Average foreign exchange rates</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>14</td>\n    </tr>\n    <tr>\n      <td>Guidance rates</td>\n      <td>FY 23/24</td>\n      <td></td>\n      <td></td>\n      <td>14</td>\n    </tr>\n  </tbody>\n</table>"
        },
        "text": "Other"
    },
    {
        "type": "Table",
        "element_id": "080e1a745a2a3f2df22b6a08d33d59bb",
        "metadata": {
            "filename": "vodafone.xlsx",
            "file_directory": "example-docs",
            "last_modified": "2023-10-03T17:51:34",
            "filetype": "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
            "parent_id": "f97e9da0e3b879f0a9df979ae260a5f7",
            "languages": [
                "spa",
                "ita"
            ],
            "page_number": 1,
            "page_name": "Index",
            "text_as_html": "<table border=\"1\" class=\"dataframe\">\n  <tbody>\n    <tr>\n      <td>Topic</td>\n      <td>Period</td>\n      <td></td>\n      <td></td>\n      <td>Page</td>\n    </tr>\n    <tr>\n      <td>Average foreign exchange rates</td>\n      <td>Nine quarters to 30 June 2023</td>\n      <td></td>\n      <td></td>\n      <td>14</td>\n    </tr>\n    <tr>\n      <td>Guidance rates</td>\n      <td>FY 23/24</td>\n      <td></td>\n      <td></td>\n      <td>14</td>\n    </tr>\n  </tbody>\n</table>"
        },
        "text": "\n\n\nTopic\nPeriod\n\n\nPage\n\n\nAverage foreign exchange rates\nNine quarters to 30 June 2023\n\n\n14\n\n\nGuidance rates\nFY 23/24\n\n\n14\n\n\n"
    }
]
```
2023-10-04 13:30:23 -04:00
Yao You
19d8bff275
feat: change default hi_res model to yolox quantized (#1607) 2023-10-04 03:28:47 +00:00
Roman Isecke
8821689f36
Roman/s3 minio all cloud support (#1606)
### Description
Exposes the endpoint url as an access kwarg when using the s3 filesystem
library via the fsspec abstraction. This allows for any non-aws data
providers that support the s3 protocol to be used with the s3 connector
(i.e. minio)

Closes out https://github.com/Unstructured-IO/unstructured/issues/950

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: rbiseck3 <rbiseck3@users.noreply.github.com>
2023-10-03 14:31:28 -04:00
Roman Isecke
b2e997635f
roman/es ingest test fixes (#1610)
### Description
update elasticsearch docker setup to use docker-compose

Would close out
https://github.com/Unstructured-IO/unstructured/issues/1609
2023-10-03 10:39:33 -04:00
Roman Isecke
11cdd8d71f
roman/drop downloads in ingest tests (#1614)
### Description
In an effort to mitigate resource consumption when running CI tests,
cleanup download dir for ingest tests after each one.
2023-10-02 20:47:24 +00:00
Yao You
ad59a879cc
chore: bump inference to 0.6.6 (#1563)
- bump `unstructured-inference` to `0.6.6`
- specify default model name for element detection to be
`detectron2_onnx` to keep current behavior
- NOTE: the updated inference package by default would use yolox as
element detection model; this will be evaluated and enabled in a
separated PR

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: badGarnet <badGarnet@users.noreply.github.com>
2023-09-29 19:09:57 +00:00
Yao You
af7639e23f
ci: add retry to elastic search ingest test (#1581)
Occasionally the es test can fail because the index fail to be created
on the first try. Experiments show adding timeout doesn't help but add
retry mitigates the issue. See history of commits in branch:
yao/bump-inference-to-0.6.6
https://github.com/Unstructured-IO/unstructured/pull/1563

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: badGarnet <badGarnet@users.noreply.github.com>
2023-09-29 13:42:21 -05:00
cragwolfe
44f5605ef3
build(image): call python3 not python for image compat (#1574)
Fixes 

docker exec unstructured-smoke-test /bin/bash -c
/home/notebook-user/test_unstructured_ingest/test-ingest-wikipedia.sh
/home/notebook-user/test_unstructured_ingest/test-ingest-wikipedia.sh:
line 10: python: command not found

in
https://github.com/Unstructured-IO/unstructured/blob/6ad4971/scripts/docker-smoke-test.sh#L43
that was preventing docker images from being built.
2023-09-28 21:48:19 -07:00
Christine Straub
94fbbed189
feat: bbox shrinking in xycut algo, better natural reading order (#1560)
Closes GH Issue #1233.

### Summary
- add functionality to shrink all bounding boxes along x and y axes
(still centered around the same center point) before running xy-cut sort

### Evaluation
Run the followin gcommand for this
[PDF](https://utic-dev-tech-fixtures.s3.us-east-2.amazonaws.com/pastebin/patent-11723901-page2.pdf).

PYTHONPATH=. python examples/custom-layout-order/evaluate_xy_cut_sorting.py <file_path> <strategy>
2023-09-29 03:48:02 +00:00
Yao You
cd8c6a2e09
fix: occasional SIGABRT with deltalake writer on Linux (#1567)
- resolves an issue where occasionally deltalake writer results in
SIGABRT event though the writer finished writing table properly on linux
- this is first observed in ingest test
- Putting the writer into a process mitigates this problem by forcing
python to finish the deltalake rust backend to finish its tasks

## test

To test this it is best to setup an instance on a Linux system since the
problem has only been observed on Linux so far. Run

```bash
PYTHONPATH=. ./unstructured/ingest/main.py delta-table --num-processes 2 --metadata-exclude coordinates,filename,file_directory,metadata.data_source.date_processed,metadata.last_modified,metadata.date_created,metadata.detection_class_prob,metadata.parent_id,metadata.category_depth --table-uri ../tables/delta/ --preserve-downloads --verbose delta-table --write-column json_data --mode overwrite --table-uri file:///tmp/delta
```

Without this fix occasionally we'd encounter `SIGABTR`.

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
2023-09-29 02:41:18 +00:00
Yao You
62b0557792
build: ignore failing delta lake test ingest for now (#1557) 2023-09-27 19:49:21 -05:00
rvztz
2e01c49d90
feat: adds data source properties to delta table connector. (#1464) 2023-09-27 17:46:01 -07:00
Roman Isecke
9836235ead
Chunking support for SharePoint Connector (#1548)
### Description
Optionally adds in chunking to the CLI which adds a flag to trigger
chunking and exposes the parameters used by the `chunk_by_title` method.
Runs chunking before the embedding step.


Opened to replace original PR
https://github.com/Unstructured-IO/unstructured/pull/1531
2023-09-27 21:05:55 +00:00
Klaijan
d26d591d6a
feat: get embedded url, associate text and start index for pdf (#1539)
**Executive Summary**

Adds PDF functionality to capture hyperlink (external or internal) for
pdf fast strategy along with associate text.

**Technical Details**

- `pdfminer` associates `annotation` (links and uris) with bounding box
rather than text. Therefore, the link and text matching is not a perfect
pair but rather a logic-based and calculation matching from bounding box
overlapping.
- There is no word-level bounding box. Only character-level (access
using `LTChar`). Thus in order to get to word-level, there is a window
slicing through the text. The words are captured in alphanumeric and
non-alphanumeric separately, meaning it will split the word if contains
both, on the first encounter of non-alphanumeric.)
- The bounding box calculation is calculated using start and stop
coordinates for the corresponding word calculated from above. The
calculation is simply using distance between two dots.

The result now contains `links` in `metadata` as shown below:

```
            "links": [
                {
                    "text": "link",
                    "url": "https://github.com/Unstructured-IO/unstructured",
                    "start_index": 12
                },
                {
                    "text": "email",
                    "url": "mailto:unstructuredai@earlygrowth.com",
                    "start_index": 30
                },
                {
                    "text": "phone number",
                    "url": "tel:6505124019",
                    "start_index": 49
                }
            ]
```

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: Klaijan <Klaijan@users.noreply.github.com>
2023-09-27 13:43:32 -04:00
Roman Isecke
5c7b4f586b
Roman/azure cognitive embeddings (#1524)
### Description
This PR is two-fold:  

**Embeddings:**
* Embeddings incorporated into the sharepoint source connector, which
will now call out to OpenAI and create embeddings if the flag is passed
in and the api key provided.

**Writing vector content (embeddings) to Azure cognitive search index:**
* The schema for the index expected to exist in Azure has been updated
to include the vector field type and a test script has been added to
test the new content being produced from the Sharepoint connector to
push the embedding content.

Some important notes about other changes in here:
* The embedding code had to be updated to patch the `to_dict` method on
elements to add `embeddings` to the dict output if that was added. While
the code originally added the embedding content, when `to_dict` was
called to save the content as json, this was lost.
2023-09-26 23:24:21 +00:00
rvztz
d8a36af08c
fix: Sharepoint connector server_path issue (#1497) 2023-09-26 14:25:35 -07:00
Roman Isecke
81af879038
roman/increase ingest tests num processes (#1500)
### Description
In an effort to speed up the ingest tests, bumping the num if processes
to the max on the system for each
2023-09-26 16:06:53 -05:00
shreyanid
32bfebccf7
feat: introduce language detection function for text partitioning function (#1453)
### Summary
Uses `langdetect` to detect all languages present in the input document.

### Details
- Converts all language codes (whether user inputted or detected using
`langdetect`) to a standard ISO 639-3 code.
- Adds `languages` field to the metadata
- Will revisit how to nonstandardly represent simplified vs traditional
Chinese scripts internally (separate PR).
- Update ingest test results to add `languages` field to documents. Some
other side effects are changes in order of some elements and changes in
element categorization

### Test
You can test the detect_languages function individually by importing the
function and inputting a text sample and optionally a language:
```
text = "My lubimy mleko i chleb."
doc_langs = detect_languages(text)
print(doc_langs)
```
-> ['ces', 'pol', 'slk']

---------

Co-authored-by: Newel H <37004249+newelh@users.noreply.github.com>
Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: shreyanid <shreyanid@users.noreply.github.com>
Co-authored-by: Trevor Bossert <37596773+tabossert@users.noreply.github.com>
Co-authored-by: Ronny H <138828701+ron-unstructured@users.noreply.github.com>
2023-09-26 18:09:27 +00:00
David Potter
01a147eb1d
feat: improved salesforce partitioning (#1475)
* Partitions Salesforce data as xlm instead of text for improved detail and flexibility
* Partitions htmlbody instead of textbody for Salesforce emails
2023-09-25 11:44:28 -07:00
Roman Isecke
bd49cfbab7
feat: adds Azure Cognitive Search (full text) destination connector (#1459)
### Description
New [Azure Cognitive
Search](https://azure.microsoft.com/en-us/products/ai-services/cognitive-search)
destination connector added. Writes each json element from the created
json files via partition and writes that content to an index.

**Bonus bug fix:** Due to a recent change where the default version of
python used in the repo was bumped to `3.10` from `3.8`, this means
running `pip-compile` now runs it against that version rather than the
lowest we support which is still `3.8`. This breaks the setup for those
lower versions because some of the versions pulled in by `pip-compile`
exist for `3.10` but not `3.8`. `pip-compile` was updates to run as a
script that checks the version of python being used first, which helps
guarantee that all dependencies meet the minimum python version
requirement.

Closes out https://github.com/Unstructured-IO/unstructured/issues/1466
2023-09-25 10:27:42 -04:00
ryannikolaidis
48c52365dd
build(test): disable airtable-large ingest test (#1509) 2023-09-23 02:00:01 +00:00
ryannikolaidis
955efac935
fix: SharePoint connector fails if any document has an unsupported filetype (#1493) 2023-09-22 18:47:28 +00:00
Christine Straub
2d951722df
Feat/1332 save embedded images in pdf (#1371)
Addresses
[#1332](https://github.com/Unstructured-IO/unstructured/issues/1332)
with `unstructured-inference` PR
[#208](https://github.com/Unstructured-IO/unstructured-inference/pull/208).
### Summary
- Add `image_path` to element metadata
- Pass parameters related to extracting images in PDF
- Preserve image elements ignored due to garbage text if
`el.metadata.image_path` is `True`
### Testing


from unstructured.partition.pdf import partition_pdf

f_path = "example-docs/embedded-images.pdf"

# default image output directory
elements = partition_pdf(
    f_path,
    strategy=strategy,
    extract_images_in_pdf=True,
)

# specific image output directory
elements = partition_pdf(
    f_path,
    strategy=strategy,
    extract_images_in_pdf=True,
    image_output_dir_path=<directory path>,
)
2023-09-22 09:16:03 +00:00
cragwolfe
92ad7698fb
build(test): ignore notion ingest test failures for now (#1496)
There is a fix in progress here:
https://github.com/Unstructured-IO/unstructured/pull/1492 , but let's
see proven stability of a few days before allowing notion ingest test
failures to block CI.
2023-09-22 07:19:21 +00:00
Roman Isecke
e88f7d9eab
chore: ingest test file cleanup (#1366) 2023-09-21 11:51:08 -07:00
rvztz
424852ab39
feat: adds data source properties to Sharepoint and Outlook (#1278) 2023-09-20 09:13:35 +00:00
rvztz
2f52df180f
Adds data source properties to onedrive, reddit and slack (#1281) 2023-09-20 04:26:36 +00:00
rvztz
9a3e24fcbb
Adds data source properties to elasticsearch, wikipedia and google-drive (#1282) 2023-09-19 20:25:38 +00:00
rvztz
92e18c3f58
feat: adds data source properties to airtable, confluence and discord (#1283) 2023-09-19 18:05:27 +00:00
Yao You
b534b2a6cd
Chore: bump inference package version to 0.5.28 and new release (#1355)
This bump removes the preprocessing before table structure extraction
and improves the OCR results for tables.

---------

Co-authored-by: yuming-long <yuming-long@users.noreply.github.com>
2023-09-15 18:26:15 -07:00
Roman Isecke
333558494e
roman/delta lake dest connector (#1385)
### Description
Add delta table downstream destination connector

Closes https://github.com/Unstructured-IO/unstructured/issues/1415
2023-09-15 22:13:39 +00:00
rvztz
3be9f089b3
feat: adds data source properties to fsspec-based connectors (#1279) 2023-09-15 05:56:44 +00:00
Newel H
cd704e873b
Feat: Create a naive hierarchy for elements (#1268)
## **Summary**
By adding hierarchy to unstructured elements, users will have more
information for implementing vector db/LLM chunking strategies. For
example, text elements could be queried by their preceding title
element. The hierarchy is implemented by a parent_id tag in the
element's metadata.

### Features
- Introduces a parent_id to ElementMetadata (The id of the parent
element, not a pointer)
- Creates a rule set for assigning hierarchies. Sensible default is
assigned, with an optional override parameter
- Sets element parent ids if there isn't an existing parent id or
matches the ruleset

### How it works

Hierarchies are assigned via a parent id field in element metadata.
Elements are read sequentially and evaluated against a ruleset. For
example take the following elements:

1. Title, "This is the Title"
2. Text, "this is the text"

And the ruleset: `{"title": ["text"]}`. When evaluated, the parent_id of
2 will be the id of 1. The algorithm for determining this is more
complex and resolves several edge cases, so please read the code for
further details.

### Schema Changes

```
@dataclass
class ElementMetadata:
      coordinates: Optional[CoordinatesMetadata] = None
      data_source: Optional[DataSourceMetadata] = None
      filename: Optional[str] = None
      file_directory: Optional[str] = None
      last_modified: Optional[str] = None
      filetype: Optional[str] = None
      attached_to_filename: Optional[str] = None
+     parent_id: Optional[Union[str, uuid.UUID, NoID, UUID]] = None
+     category_depth: Optional[int] = None

...
```

### Testing
```
from unstructured.partition.auto import partition
from typing import List

elements = partition(filename="./unstructured/example-docs/fake-html.html", strategy="auto")

for element in elements:
    print(
        f"Category:  {getattr(element, 'category', '')}\n"\
        f"Text:      {getattr(element, 'text', '')}\n"
        f"ID:        {element.id}\n" \
        f"Parent ID: {element.metadata.parent_id}\n"\
        f"Depth:     {element.metadata.category_depth}\n" \
    )
```

### Additional Notes
Implementing this feature revealed a possibly undesired side-effect in
how element metadata are processed. In
`unstructured/partition/common.py` the `_add_element_metadata` is
invoked as part of the `add_metadata_with_filetype` decorator for
filetype partitioning. This method is intended to add additional
information to the metadata generated with the element including
filename and filetype, however the existing metadata is merged into a
newly created metadata object rather than the other way around. Because
of the way it's structured, new metadata fields can easily be forgotten
and pose debugging challenges to developers. This likely warrants a new
issue.

I'm guessing that the implementation is done this way to avoid issues
with deserializing elements, but could be wrong.

---------

Co-authored-by: Benjamin Torres <benjats07@users.noreply.github.com>
2023-09-14 11:23:16 -04:00
Klaijan
00181b88df
feat: pdf auto strategy groups broken numbered and bullet list items(#1393)
**Summary**
Adds logic to combine broken numbered list for pdf fast strategy.

**Details**
Previously the document reads the numbered list items part of the
`layout-parser-paper-fast.pdf` file as:

```
'1. An off-the-shelf toolkit for applying DL models for layout detection, character'
'recognition, and other DIA tasks (Section 3)'
'2. A rich repository of pre-trained neural network models (Model Zoo) that'
'underlies the off-the-shelf usage'
'3. Comprehensive tools for efficient document image data annotation and model'
'tuning to support different levels of customization'
'4. A DL model hub and community platform for the easy sharing, distribu- tion, and discussion of DIA models and pipelines, to promote reusability, reproducibility, and extensibility (Section 4)'
```

Now it reads:

```
'1. An off-the-shelf toolkit for applying DL models for layout detection, character recognition, and other DIA tasks (Section 3)'
'2. A rich repository of pre-trained neural network models (Model Zoo) that underlies the off-the-shelf usage'
'3. Comprehensive tools for efficient document image data annotation and model' tuning to support different levels of customization'
'4. A DL model hub and community platform for the easy sharing, distribu- tion, and discussion of DIA models and pipelines, to promote reusability, reproducibility, and extensibility (Section 4)'
```

The added logic leverages `ElementType` and `coordinates` to determine
whether the following lines is a part of the previously detected
`ListItem` or not.

**Test**
Add test that checks the element length less than original version with
broken numbered list. The test also checks whether the first detected
numbered list ends with previously broken line.

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: Klaijan <Klaijan@users.noreply.github.com>
2023-09-13 21:30:06 +00:00
qued
6595632a57
enhancement: backup text categorization (#1322)
Currently there are some cases when `partition_pdf` is run using the
`hi_res` strategy, in which elements can come back with category
`UncategorizedText`. This happens when the detection model fails to
detect an element, but we're able to find it anyway either because it
was embedded in the PDF, or we found it using OCR.

This commit is to allow for attempting to categorize these uncategorized
elements using our text-based classification function,
`element_from_text`.
2023-09-12 20:32:48 +00:00
shreyanid
c2853e4ac3
refactor languages parameter for pdf partition functions (#1334)
### Summary

In order to support language functionality other than Tesseract OCR, we
want to represent languages provided for either partitioning accuracy or
OCR as a standard list of langcodes as strings.

### Details

Adds `languages` (a list of strings) as a parameter to pdf partitioning
functions. Marks `ocr_languages` for deprecation. Adds a new file
`lang.py` for language-related helper functions.

Coming up: langcode standardization, language detection

### Test

Call `partition_pdf` or `partition_pdf_or_image` with a variety of
strategies, languages, or `ocr_languages`.
- inclusion of `ocr_languages` as a parameter should display a
deprecation warning
- the other valid call outputs should be no different from the current
outputs.

ex:
```
from unstructured.partition.pdf import partition_pdf

elements = partition_pdf(filename="example-docs/DA-1p.pdf", strategy="hi_res", languages=["eng", "spa"])
print("\n\n".join([str(el) for el in elements]))
```
2023-09-12 16:15:26 +00:00
Amanda Cameron
a501d1d18f
Adding table extraction to partition_html (#1324)
Adding table extraction to HTML partitioning.

This PR utilizes 'table' HTML elements to extract and parse HTML tables
and return them in partitioning.

```
# checkout this branch, go into ipython shell
In [1]: from unstructured.partition.html import partition_html
In [2]: path_to_html = "{html sample file with table}"
In [3]: elements = partition_html(path_to_html)
```
you should see the table in the elements list!
2023-09-11 11:14:11 -07:00
Roman Isecke
59e850bbd9
Roman/downstream connector cli subcommand (#1302)
### Description
Update all other connectors to use the new downstream architecture that
was recently introduced for the s3 connector.

Closes #1313 and #1311
2023-09-11 11:40:56 -04:00
cragwolfe
d0749d181f
fix: avoid PDF sorting error on negative coords (#1361)
The default sorting algorithm for PDF's, "xycut," would cause an error
when partitioning a document if Y coordinate points were negative. This
change checks for that condition (or more broadly, any negative
coordinates) and falls back to the "basic" sort if that is the case.

This PR does not address the underlying issue of "bad points" which
still should be investigated. However, the sorting code should be less
brittle to unexpected bounding boxes in the first case.

Resolves: https://github.com/Unstructured-IO/unstructured/issues/1296
2023-09-10 19:29:49 -07:00
cragwolfe
87bfe7a1fe
build(deps): PDF images, unstructured-inference==0.5.23 (#1341)
Bumps unstructured-inference==05.23 to pull in @christinestraub's fix:
https://github.com/Unstructured-IO/unstructured-inference/pull/198 , so
embedded Images
in PDF's are now included in partition results ("hi_res").

From the perspective of elements with clean text, this is not a big win
as a lot of the images have OCR garbage. However, it is important to
preserve image elements for other downstream use cases, so overall this
is a step forward.
2023-09-08 05:29:53 +00:00