
position is that it permits the definition of  new functional 
forms, in effect, merely by defining new functions. It also 
permits one to write recursive functions without a defi- 
nition. 

We give one more example of a controlling function 
for a functional form: D e f  p C O N S  -= otapplyotlodistr. 
This definition results in < C O N S , f i  . . . . .  fn>- -where  the 
f~ are objects--representing the same function as 
[pfl . . . . .  pfn]. The following shows this. 

( p < C O N S , f i  . . . . .  fn>) :X 

= ( # C O N S ) : < < C O N S ,  f i  . . . . .  fn >,X> 

by metacomposition 

= aapplyot lodis tr :<<CONS, f i  . . . . .  fn>,X> 

by def of  p C O N S  

= aapply:<<f~,x> . . . . .  <fn,X>> 
by def of  tl and distr and o 

= <apply:<f i ,x> . . . . .  apply:<fn, X>> 
by def of a 

= <(fx:x) . . . . .  (fn:X)> by def of  apply. 

In evaluating the last expression, the meaning function 
will produce the meaning of  each application, giving 

pJ~:x as the ith element. 
Usually, in describing the function represented by a 

sequence, we shall give its overall effect rather than show 
how its controlling operator achieves that effect. Thus 
we would simply write 

( p < C O N S ,  ffi . . . . .  f~>):x = <(ffi:x) . . . . .  (f~:x)> 

instead of  the more detailed account above. 
We need a controlling operator, COMP,  to give us 

sequences representing the functional form composition. 
We take p C O M P  to be a primitive function such that, 
for all objects x, 

( p < C O M e , f l  . . . . .  fn>):x 
= (fi:(f2:(... :(f~:x)...))) for n _> 1. 

(I am indebted to Paul Me Jones for his observation that 
ordinary composition could be achieved by this primitive 
function rather than by using two composition rules in 
the basic semantics, as was done in an earlier paper 
[2].) 

Although FFP systems permit the definition and 
investigation of  new functional forms, it is to be expected 
that most programming would use a fixed set of  forms 
(whose controlling operators are primitives), as in FP, so 
that the algebraic laws for those forms could be em- 
ployed, and so that a structured programming style could 
be used based on those forms. 

In addition to its use in defining functional forms, 
metacomposition can be used to create recursive func- 
tions directly without the use of  recursive definitions of  
the form D e f f  ~ E ( f ) .  For example, if p M L A S T  
nullotlo2 ~ lo2; applyo[1, tlo2], then p < M L A S T >  -= 
last, where last:x m x = <xl  ..... Xn> ~ X~; &. Thus the 
operator < M L A S T >  works as follows: 

# ( < M L A S T > : < A , B > )  
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= # ( p M L A S T : < < M L A S T > , < A , B > > )  
by metacomposition 

= #(applyo[1, t l o 2 ] : < < M L A S T > , < A , B > > )  
= ~ t (app ly :<<MLAST>,<B>>)  
= # ( < M L A S T > : < B > )  
= i x ( p M L A S T : < < M L A S T > , < B > > )  
= # ( l o 2 : < < M L A S T > , < B > > )  
= B .  

13.3.3 Summary  of  the properties of  p and #. So far 
we have shown how p maps atoms and sequences into 
functions and how those functions map objects into 
expressions. Actually, p and all FFP functions can be 
extended so that they are defmed for all expressions. 
With such extensions the properties of  p and/~ can be 
summarized as follows: 

1) # E [expressions -*  objects]. 
2) If  x is an object, #x = x. 
3) I f  e is an expression and e = <el . . . . .  en>, then 

#e = <#e l ,  . . . ,  #en>. 
4) p E [expressions ~ [expressions ~ expressions]]. 
5) For any expression e, pe = p~e) .  
6) I f  x is an object and e an expression, then 

ox:e = px:(ge). 
7) If  x and y are objects, then #(x:y) = #(Ox:y). In 

words: the meaning of  an FFP application (x:y) is found 
by applying px, the function represented by x, to y and 
then finding the meaning of  the resulting expression 
(which is usually an object and is then its own meaning). 

13.3.4 Cells, fetching, and storing. For a number of  
reasons it is convenient to create functions which serve 
as names. In particular, we shall need this facility in 
describing the semantics of  det'mitions in FFP systems. 
To introduce naming functions, that is, the ability to 
f e tch  the contents of  a cell with a given name from a 
store (a sequence of  cells) and to store a cell with given 
name and contents in such a sequence, we introduce 
objects called cells and two new functional forms, fe tch  
and store. 
Cells 

A cell is a triple < C E L L ,  name, contents>. We use this 
form instead of  the pair <name, contents> so that cells 
can be distinguished from ordinary pairs. 
Fetch 

The functional form fe tch  takes an object n as its 
parameter (n is customarily an atom serving as a name); 
it is written l'n (read "fetch n"). Its definition for objects 
n and x is 

l"n:x -= x = ~ ~ #;  atom:x ~ ±; 
(l:x) = <CELL,n , c>  ~ c; ~'notl:x, 

where # is the atom "default." Thus l'n (fetch n) applied 
to a sequence gives the contents of  the first cell in the 
sequence whose name is n; If  there is no cell named n, 
the result is default, # .  Thus l'n is the name function for 
the name n. (We assume that p F E T C H  is the primitive 
function such that p < F E T C H ,  n> ~ l"n. Note that ~n 
simply passes over elements in its operand that are not 
cells.) 
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