
position is that it permits the definition of new functional
forms, in effect, merely by defining new functions. It also
permits one to write recursive functions without a defi-
nition.

We give one more example of a controlling function
for a functional form: D e f p C O N S -= otapplyotlodistr.
This definition results in < C O N S , f i fn>- -where the
f~ are objects--representing the same function as
[pfl pfn]. The following shows this.

(p < C O N S , f i fn>) :X

= (# C O N S) : < < C O N S , f i fn >,X>

by metacomposition

= aapplyot lodis tr :<<CONS, f i fn>,X>

by def of p C O N S

= aapply:<<f~,x> <fn,X>>
by def of tl and distr and o

= <apply:<f i ,x> apply:<fn, X>>
by def of a

= <(fx:x) (fn:X)> by def of apply.

In evaluating the last expression, the meaning function
will produce the meaning of each application, giving

pJ~:x as the ith element.
Usually, in describing the function represented by a

sequence, we shall give its overall effect rather than show
how its controlling operator achieves that effect. Thus
we would simply write

(p < C O N S , ffi f~>):x = <(ffi:x) (f~:x)>

instead of the more detailed account above.
We need a controlling operator, COMP, to give us

sequences representing the functional form composition.
We take p C O M P to be a primitive function such that,
for all objects x,

(p < C O M e , f l fn>):x
= (fi:(f2:(... :(f~:x)...))) for n _> 1.

(I am indebted to Paul Me Jones for his observation that
ordinary composition could be achieved by this primitive
function rather than by using two composition rules in
the basic semantics, as was done in an earlier paper
[2].)

Although FFP systems permit the definition and
investigation of new functional forms, it is to be expected
that most programming would use a fixed set of forms
(whose controlling operators are primitives), as in FP, so
that the algebraic laws for those forms could be em-
ployed, and so that a structured programming style could
be used based on those forms.

In addition to its use in defining functional forms,
metacomposition can be used to create recursive func-
tions directly without the use of recursive definitions of
the form D e f f ~ E (f) . For example, if p M L A S T
nullotlo2 ~ lo2; applyo[1, tlo2], then p < M L A S T > -=
last, where last:x m x = <xl Xn> ~ X~; &. Thus the
operator < M L A S T > works as follows:

(< M L A S T > : < A , B >)

633

= # (p M L A S T : < < M L A S T > , < A , B > >)
by metacomposition

= #(applyo[1, t l o 2] : < < M L A S T > , < A , B > >)
= ~ t (app ly :<<MLAST>,>)
= # (< M L A S T > : < B >)
= i x (p M L A S T : < < M L A S T > , < B > >)
= # (l o 2 : < < M L A S T > , < B > >)
= B .

13.3.3 Summary of the properties of p and #. So far
we have shown how p maps atoms and sequences into
functions and how those functions map objects into
expressions. Actually, p and all FFP functions can be
extended so that they are defmed for all expressions.
With such extensions the properties of p and/~ can be
summarized as follows:

1) # E [expressions -* objects].
2) If x is an object, #x = x.
3) I f e is an expression and e = <el en>, then

#e = <#e l , . . . , #en>.
4) p E [expressions ~ [expressions ~ expressions]].
5) For any expression e, pe = p~e) .
6) I f x is an object and e an expression, then

ox:e = px:(ge).
7) If x and y are objects, then #(x:y) = #(Ox:y). In

words: the meaning of an FFP application (x:y) is found
by applying px, the function represented by x, to y and
then finding the meaning of the resulting expression
(which is usually an object and is then its own meaning).

13.3.4 Cells, fetching, and storing. For a number of
reasons it is convenient to create functions which serve
as names. In particular, we shall need this facility in
describing the semantics of det'mitions in FFP systems.
To introduce naming functions, that is, the ability to
f e tch the contents of a cell with a given name from a
store (a sequence of cells) and to store a cell with given
name and contents in such a sequence, we introduce
objects called cells and two new functional forms, fe tch
and store.
Cells

A cell is a triple < C E L L , name, contents>. We use this
form instead of the pair <name, contents> so that cells
can be distinguished from ordinary pairs.
Fetch

The functional form fe tch takes an object n as its
parameter (n is customarily an atom serving as a name);
it is written l'n (read "fetch n"). Its definition for objects
n and x is

l"n:x -= x = ~ ~ #; atom:x ~ ±;
(l:x) = <CELL,n , c> ~ c; ~'notl:x,

where # is the atom "default." Thus l'n (fetch n) applied
to a sequence gives the contents of the first cell in the
sequence whose name is n; If there is no cell named n,
the result is default, # . Thus l'n is the name function for
the name n. (We assume that p F E T C H is the primitive
function such that p < F E T C H , n> ~ l"n. Note that ~n
simply passes over elements in its operand that are not
cells.)

Communications August 1978
of Volume 21
the ACM Number 8

