{ "cells": [ { "cell_type": "markdown", "id": "a3ce962e", "metadata": {}, "source": [ "## Loading Data into Weaviate with `unstructured`\n", "\n", "This notebook shows a basic workflow for uploading document elements into Weaviate using the `unstructured` library. To get started with this notebook, first install the dependencies with `pip install -r requirements.txt` and start the Weaviate docker container with `docker-compose up`." ] }, { "cell_type": "code", "execution_count": 1, "id": "5d9ffc17", "metadata": {}, "outputs": [], "source": [ "import json\n", "\n", "import tqdm\n", "from unstructured.partition.pdf import partition_pdf\n", "from unstructured.staging.weaviate import create_unstructured_weaviate_class, stage_for_weaviate\n", "import weaviate\n", "from weaviate.util import generate_uuid5" ] }, { "cell_type": "markdown", "id": "673715e9", "metadata": {}, "source": [ "The first step is to partition the document using the `unstructured` library. In the following example, we partition a PDF with `partition_pdf`. You can also partition over a dozen document types with the `partition` function." ] }, { "cell_type": "code", "execution_count": 2, "id": "f9fc0cf9", "metadata": {}, "outputs": [], "source": [ "filename = \"../../example-docs/layout-parser-paper-fast.pdf\"\n", "elements = partition_pdf(filename=filename, strategy=\"fast\")" ] }, { "cell_type": "markdown", "id": "3ae76364", "metadata": {}, "source": [ "Next, we'll create a schema for our Weaviate database using the `create_unstructured_weaviate_class` helper function from the `unstructured` library. The helper function generates a schema that includes all of the elements in the `ElementMetadata` object from `unstructured`. This includes information such as the filename and the page number of the document element. After specifying the schema, we create a connection to the database with the Weaviate client library and create the schema. You can change the name of the class by updating the `unstructured_class_name` variable." ] }, { "cell_type": "code", "execution_count": 3, "id": "91057cb1", "metadata": {}, "outputs": [], "source": [ "unstructured_class_name = \"UnstructuredDocument\"" ] }, { "cell_type": "code", "execution_count": 4, "id": "78e804bb", "metadata": {}, "outputs": [], "source": [ "unstructured_class = create_unstructured_weaviate_class(unstructured_class_name)\n", "schema = {\"classes\": [unstructured_class]} " ] }, { "cell_type": "code", "execution_count": 5, "id": "3e317a2d", "metadata": {}, "outputs": [], "source": [ "client = weaviate.Client(\"http://localhost:8080\")" ] }, { "cell_type": "code", "execution_count": 6, "id": "0c508784", "metadata": {}, "outputs": [], "source": [ "client.schema.create(schema)" ] }, { "cell_type": "markdown", "id": "024ae133", "metadata": {}, "source": [ "Next, we stage the elements for Weaviate using the `stage_for_weaviate` function and batch upload the results to Weaviate. `stage_for_weaviate` outputs a dictionary that conforms to the schema we created earlier. Once that data is stage, we can use the Weaviate client library to batch upload the results to Weaviate." ] }, { "cell_type": "code", "execution_count": 7, "id": "a7018bb1", "metadata": {}, "outputs": [], "source": [ "data_objects = stage_for_weaviate(elements)" ] }, { "cell_type": "code", "execution_count": 8, "id": "af712d8e", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████████████████████████████████████████████████████████████████| 28/28 [00:46<00:00, 1.66s/it]\n" ] } ], "source": [ "with client.batch(batch_size=10) as batch:\n", " for data_object in tqdm.tqdm(data_objects):\n", " batch.add_data_object(\n", " data_object,\n", " unstructured_class_name,\n", " uuid=generate_uuid5(data_object),\n", " )" ] }, { "cell_type": "markdown", "id": "dac10bf5", "metadata": {}, "source": [ "Now that the documents are in Weaviate, we're able to run queries against Weaviate!" ] }, { "cell_type": "code", "execution_count": 9, "id": "14098434", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{\n", " \"data\": {\n", " \"Get\": {\n", " \"UnstructuredDocument\": [\n", " {\n", " \"text\": \"Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of document image analysis (DIA) tasks including document image classi\\ufb01cation [11,\"\n", " }\n", " ]\n", " }\n", " }\n", "}\n" ] } ], "source": [ "near_text = {\"concepts\": [\"document understanding\"]}\n", "\n", "result = (\n", " client.query\n", " .get(\"UnstructuredDocument\", [\"text\"])\n", " .with_near_text(near_text)\n", " .with_limit(1)\n", " .do()\n", ")\n", "\n", "print(json.dumps(result, indent=4))" ] }, { "cell_type": "code", "execution_count": null, "id": "c191217c", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.13" } }, "nbformat": 4, "nbformat_minor": 5 }