mirror of
https://github.com/Unstructured-IO/unstructured.git
synced 2025-07-07 00:52:42 +00:00

Change default values for table extraction - works in pair with [this](https://github.com/Unstructured-IO/unstructured-api/pull/370) `unstructured-api` PR We want to move away from `pdf_infer_table_structure` parameter, in this PR: - We change how it's treated wrt `skip_infer_table_types` parameter. Whether to extract tables from pdf now follows from the rule: `pdf_infer_table_structure && "pdf" not in skip_infer_table_types` - We set it to `pdf_infer_table_structure=True` and `skip_infer_table_types=[]` by default - We remove it from the examples in documentation - We describe it as deprecated in favor of `skip_infer_table_types` in documentation More detailed description of how we want parameters to interact - if `pdf_infer_table_structure` is False tables will never extracted from pdf - if `pdf_infer_table_structure` is True tables will be extracted from pdf unless it's skipped via `skip_infer_table_types` - on default `pdf_infer_table_structure=True` and `skip_infer_table_types=[]` --------- Co-authored-by: Filip Knefel <filip@unstructured.io> Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com> Co-authored-by: ds-filipknefel <ds-filipknefel@users.noreply.github.com> Co-authored-by: Ronny H <138828701+ron-unstructured@users.noreply.github.com>
952 lines
52 KiB
ReStructuredText
952 lines
52 KiB
ReStructuredText
############
|
|
Partitioning
|
|
############
|
|
|
|
|
|
Partitioning functions in ``unstructured`` allow users to extract structured content from a raw unstructured document.
|
|
These functions break a document down into elements such as ``Title``, ``NarrativeText``, and ``ListItem``,
|
|
enabling users to decide what content they'd like to keep for their particular application.
|
|
If you're training a summarization model, for example, you may only be interested in ``NarrativeText``.
|
|
|
|
|
|
The easiest way to partition documents in unstructured is to use the ``partition`` function.
|
|
If you call the ``partition`` function, ``unstructured`` will use ``libmagic`` to automatically determine the file type and invoke the appropriate partition function.
|
|
In cases where ``libmagic`` is not available, filetype detection will fall back to using the file extension.
|
|
|
|
The following table shows the document types the ``unstructured`` library currently supports. ``partition`` will recognize each of these document types and route the document
|
|
to the appropriate partitioning function. If you already know your document type, you can use the partitioning function listed in the table directly.
|
|
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Document Type | Partition Function | Strategies | Table Support | Options |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| CSV Files (`.csv`) | `partition_csv` | N/A | Yes | None |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| E-mails (`.eml`) | `partition_eml` | N/A | No | Encoding; Max Partition; Process Attachments |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| E-mails (`.msg`) | `partition_msg` | N/A | No | Encoding; Max Partition; Process Attachments |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| EPubs (`.epub`) | `partition_epub` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Excel Documents (`.xlsx`/`.xls`) | `partition_xlsx` | N/A | Yes | None |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| HTML Pages (`.html`/`.htm`) | `partition_html` | N/A | No | Encoding; Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Images (`.png`/`.jpg`/`.jpeg`/`.tiff`/`.bmp`/`.heic`) | `partition_image` | "auto", "hi_res", "ocr_only" | Yes | Encoding; Include Page Breaks; Infer Table Structure; OCR Languages, Strategy |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Markdown (`.md`) | `partition_md` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Org Mode (`.org`) | `partition_org` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Open Office Documents (`.odt`) | `partition_odt` | N/A | Yes | None |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| PDFs (`.pdf`) | `partition_pdf` | "auto", "fast", "hi_res", "ocr_only" | Yes | Encoding; Include Page Breaks; Infer Table Structure; Max Partition; OCR Languages, Strategy |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Plain Text (`.txt`/`.text`/`.log`) | `partition_text` | N/A | No | Encoding; Max Partition; Paragraph Grouper |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| PowerPoints (`.ppt`) | `partition_ppt` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| PowerPoints (`.pptx`) | `partition_pptx` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| ReStructured Text (`.rst`) | `partition_rst` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Rich Text Files (`.rtf`) | `partition_rtf` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| TSV Files (`.tsv`) | `partition_tsv` | N/A | Yes | None |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Word Documents (`.doc`) | `partition_doc` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Word Documents (`.docx`) | `partition_docx` | N/A | Yes | Include Page Breaks |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| XML Documents (`.xml`) | `partition_xml` | N/A | No | Encoding; Max Partition; XML Keep Tags |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
| Code Files (`.js`/`.py`/`.java`/ `.cpp`/`.cc`/`.cxx`/`.c`/`.cs`/ `.php`/`.rb`/`.swift`/`.ts`/`.go`) | `partition_text` | N/A | No | Encoding; Max Partition; Paragraph Grouper |
|
|
+-----------------------------------------------------------------------------------------------------+--------------------------------+----------------------------------------+----------------+------------------------------------------------------------------------------------------------------------------+
|
|
|
|
As shown in the examples below, the ``partition`` function accepts both filenames and file-like objects as input.
|
|
``partition`` also has some optional kwargs.
|
|
For example, if you set ``include_page_breaks=True``, the output will include ``PageBreak`` elements if the filetype supports it.
|
|
Additionally you can bypass the filetype detection logic with the optional ``content_type`` argument which may be specified with either the ``filename`` or file-like object, ``file``.
|
|
You can find a full listing of optional kwargs in the documentation below.
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.auto import partition
|
|
|
|
|
|
filename = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper-fast.pdf")
|
|
elements = partition(filename=filename, content_type="application/pdf")
|
|
print("\n\n".join([str(el) for el in elements][:10]))
|
|
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.auto import partition
|
|
|
|
|
|
filename = os.path.join(EXAMPLE_DOCS_DIRECTORY, "layout-parser-paper-fast.pdf")
|
|
with open(filename, "rb") as f:
|
|
elements = partition(file=f, include_page_breaks=True)
|
|
print("\n\n".join([str(el) for el in elements][5:15]))
|
|
|
|
|
|
The ``unstructured`` library also includes partitioning functions targeted at specific document types.
|
|
The ``partition`` function uses these document-specific partitioning functions under the hood.
|
|
There are a few reasons you may want to use a document-specific partitioning function instead of ``partition``:
|
|
|
|
* If you already know the document type, filetype detection is unnecessary. Using the document-specific function directly, or passing in the ``content_type`` will make your program run faster.
|
|
* Fewer dependencies. You don't need to install ``libmagic`` for filetype detection if you're only using document-specific functions.
|
|
* Additional features. The API for partition is the least common denominator for all document types. Certain document-specific function include extra features that you may want to take advantage of. For example, ``partition_html`` allows you to pass in a URL so you don't have to store the ``.html`` file locally. See the documentation below learn about the options available in each partitioning function.
|
|
|
|
|
|
Below we see an example of how to partition a document directly with the URL using the partition_html function.
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.html import partition_html
|
|
|
|
url = "https://www.cnn.com/2023/01/30/sport/empire-state-building-green-philadelphia-eagles-spt-intl/index.html"
|
|
elements = partition_html(url=url)
|
|
print("\n\n".join([str(el) for el in elements]))
|
|
|
|
|
|
``partition``
|
|
--------------
|
|
|
|
The ``partition`` function is the simplest way to partition a document in ``unstructured``.
|
|
If you call the ``partition`` function, ``unstructured`` will attempt to detect the
|
|
file type and route it to the appropriate partitioning function. All partitioning functions
|
|
called within ``partition`` are called using the default kwargs. Use the document-type
|
|
specific functions if you need to apply non-default settings.
|
|
``partition`` currently supports ``.docx``, ``.doc``, ``.odt``, ``.pptx``, ``.ppt``, ``.xlsx``, ``.csv``, ``.tsv``, ``.eml``, ``.msg``, ``.rtf``, ``.epub``, ``.html``, ``.xml``, ``.pdf``,
|
|
``.png``, ``.jpg``, ``.heic``, and ``.txt`` files.
|
|
If you set the ``include_page_breaks`` kwarg to ``True``, the output will include page breaks. This is only supported for ``.pptx``, ``.html``, ``.pdf``,
|
|
``.png``, ``.heic``, and ``.jpg``.
|
|
The ``strategy`` kwarg controls the strategy for partitioning documents. Generally available strategies are `"fast"` for
|
|
faster processing and `"hi_res"` for more accurate processing.
|
|
|
|
|
|
.. code:: python
|
|
|
|
import docx
|
|
|
|
from unstructured.partition.auto import partition
|
|
|
|
document = docx.Document()
|
|
document.add_paragraph("Important Analysis", style="Heading 1")
|
|
document.add_paragraph("Here is my first thought.", style="Body Text")
|
|
document.add_paragraph("Here is my second thought.", style="Normal")
|
|
document.save("mydoc.docx")
|
|
|
|
elements = partition(filename="mydoc.docx")
|
|
|
|
with open("mydoc.docx", "rb") as f:
|
|
elements = partition(file=f)
|
|
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.auto import partition
|
|
|
|
elements = partition(filename="example-docs/layout-parser-paper-fast.pdf")
|
|
|
|
|
|
The ``partition`` function also accepts a ``url`` kwarg for remotely hosted documents. If you want
|
|
to force ``partition`` to treat the document as a particular MIME type, use the ``content_type``
|
|
kwarg in conjunction with ``url``. Otherwise, ``partition`` will use the information from
|
|
the ``Content-Type`` header in the HTTP response. The ``ssl_verify`` kwarg controls whether
|
|
or not SSL verification is enabled for the HTTP request. By default it is on. Use ``ssl_verify=False``
|
|
to disable SSL verification in the request.
|
|
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.auto import partition
|
|
|
|
url = "https://raw.githubusercontent.com/Unstructured-IO/unstructured/main/LICENSE.md"
|
|
elements = partition(url=url)
|
|
elements = partition(url=url, content_type="text/markdown")
|
|
|
|
For more information about the ``partition`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/main/unstructured/partition/auto.py>`__.
|
|
|
|
|
|
``partition_csv``
|
|
------------------
|
|
|
|
The ``partition_csv`` function pre-processes CSV files. The output is a single
|
|
``Table`` element. The ``text_as_html`` attribute in the element metadata will
|
|
contain an HTML representation of the table.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.csv import partition_csv
|
|
|
|
elements = partition_csv(filename="example-docs/stanley-cups.csv")
|
|
print(elements[0].metadata.text_as_html)
|
|
|
|
For more information about the ``partition_csv`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/main/unstructured/partition/csv.py>`__.
|
|
|
|
|
|
``partition_doc``
|
|
------------------
|
|
|
|
The ``partition_doc`` partitioning function pre-processes Microsoft Word documents
|
|
saved in the ``.doc`` format. This partition function uses a combination of the styling
|
|
information in the document and the structure of the text to determine the type
|
|
of a text element. The ``partition_doc`` can take a filename or file-like object
|
|
as input.
|
|
``partiton_doc`` uses ``libreoffice`` to convert the file to ``.docx`` and then
|
|
calls ``partition_docx``. Ensure you have ``libreoffice`` installed
|
|
before using ``partition_doc``.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.doc import partition_doc
|
|
|
|
elements = partition_doc(filename="example-docs/fake.doc")
|
|
|
|
For more information about the ``partition_doc`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/main/unstructured/partition/doc.py>`__.
|
|
|
|
|
|
``partition_docx``
|
|
------------------
|
|
|
|
The ``partition_docx`` partitioning function pre-processes Microsoft Word documents
|
|
saved in the ``.docx`` format. This partition function uses a combination of the styling
|
|
information in the document and the structure of the text to determine the type
|
|
of a text element. The ``partition_docx`` can take a filename or file-like object
|
|
as input, as shown in the two examples below.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
import docx
|
|
|
|
from unstructured.partition.docx import partition_docx
|
|
|
|
document = docx.Document()
|
|
document.add_paragraph("Important Analysis", style="Heading 1")
|
|
document.add_paragraph("Here is my first thought.", style="Body Text")
|
|
document.add_paragraph("Here is my second thought.", style="Normal")
|
|
document.save("mydoc.docx")
|
|
|
|
elements = partition_docx(filename="mydoc.docx")
|
|
|
|
with open("mydoc.docx", "rb") as f:
|
|
elements = partition_docx(file=f)
|
|
|
|
In Word documents, headers and footers are specified per section. In the output,
|
|
the ``Header`` elements will appear at the beginning of a section and ``Footer``
|
|
elements will appear at the end. MSFT Word headers and footers have a ``header_footer_type``
|
|
metadata field indicating where the header or footer applies. Valid values are
|
|
``"primary"``, ``"first_page"`` and ``"even_page"``.
|
|
|
|
``partition_docx`` will include page numbers in the document metadata when page breaks
|
|
are present in the document. The function will detect user inserted page breaks
|
|
and page breaks inserted by the Word document renderer. Some (but not all) Word document renderers
|
|
insert page breaks when you save the document. If your Word document renderer does not do that,
|
|
you may not see page numbers in the output even if you see them visually when you open the
|
|
document. If that is the case, you can try saving the document with a different renderer.
|
|
|
|
For more information about the ``partition_docx`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/main/unstructured/partition/docx.py>`__.
|
|
|
|
|
|
``partition_email``
|
|
---------------------
|
|
|
|
The ``partition_email`` function partitions ``.eml`` documents and works with exports
|
|
from email clients such as Microsoft Outlook and Gmail. The ``partition_email``
|
|
takes a filename, file-like object, or raw text as input and produces a list of
|
|
document ``Element`` objects as output. Also ``content_source`` can be set to ``text/html``
|
|
(default) or ``text/plain`` to process the html or plain text version of the email, respectively.
|
|
In order for ``partition_email`` to also return the header information (e.g. sender, recipient,
|
|
attachment, etc.), ``include_headers`` must be set to ``True``. Returns tuple with body elements
|
|
first and header elements second, if ``include_headers`` is True.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.email import partition_email
|
|
|
|
elements = partition_email(filename="example-docs/fake-email.eml")
|
|
|
|
with open("example-docs/fake-email.eml", "r") as f:
|
|
elements = partition_email(file=f)
|
|
|
|
with open("example-docs/fake-email.eml", "r") as f:
|
|
text = f.read()
|
|
elements = partition_email(text=text)
|
|
|
|
with open("example-docs/fake-email.eml", "r") as f:
|
|
text = f.read()
|
|
elements = partition_email(text=text, content_source="text/plain")
|
|
|
|
with open("example-docs/fake-email.eml", "r") as f:
|
|
text = f.read()
|
|
elements = partition_email(text=text, include_headers=True)
|
|
|
|
|
|
``partition_email`` includes a ``max_partition`` parameter that indicates the maximum character
|
|
length for a document element.
|
|
This parameter only applies if ``"text/plain"`` is selected as the ``content_source``.
|
|
The default value is ``1500``, which roughly corresponds to
|
|
the average character length for a paragraph.
|
|
You can disable ``max_partition`` by setting it to ``None``.
|
|
|
|
|
|
You can optionally partition e-mail attachments by setting ``process_attachments=True``.
|
|
If you set ``process_attachments=True``, you'll also need to pass in a partitioning
|
|
function to ``attachment_partitioner``. The following is an example of what the
|
|
workflow looks like:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.auto import partition
|
|
from unstructured.partition.email import partition_email
|
|
|
|
filename = "example-docs/eml/fake-email-attachment.eml"
|
|
elements = partition_email(
|
|
filename=filename, process_attachments=True, attachment_partitioner=partition
|
|
)
|
|
|
|
If the content of an email is PGP encrypted, ``partition_email`` will return an empty
|
|
list of elements and emit a warning indicated the email is encrypted.
|
|
|
|
For more information about the ``partition_email`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/email.py>`__.
|
|
|
|
|
|
``partition_epub``
|
|
---------------------
|
|
|
|
The ``partition_epub`` function processes e-books in EPUB3 format. The function
|
|
first converts the document to HTML using ``pandocs`` and then calls ``partition_html``.
|
|
You'll need `pandocs <https://pandoc.org/installing.html>`_ installed on your system
|
|
to use ``partition_epub``.
|
|
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.epub import partition_epub
|
|
|
|
elements = partition_epub(filename="example-docs/winter-sports.epub")
|
|
|
|
For more information about the ``partition_epub`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/epub.py>`__.
|
|
|
|
|
|
``partition_html``
|
|
---------------------
|
|
|
|
The ``partition_html`` function partitions an HTML document and returns a list
|
|
of document ``Element`` objects. ``partition_html`` can take a filename, file-like
|
|
object, string, or url as input.
|
|
|
|
The following three invocations of partition_html() are essentially equivalent:
|
|
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.html import partition_html
|
|
|
|
elements = partition_html(filename="example-docs/example-10k.html")
|
|
|
|
with open("example-docs/example-10k.html", "r") as f:
|
|
elements = partition_html(file=f)
|
|
|
|
with open("example-docs/example-10k.html", "r") as f:
|
|
text = f.read()
|
|
elements = partition_html(text=text)
|
|
|
|
|
|
|
|
The following illustrates fetching a url and partitioning the response content.
|
|
The ``ssl_verify`` kwarg controls whether
|
|
or not SSL verification is enabled for the HTTP request. By default it is on. Use ``ssl_verify=False``
|
|
to disable SSL verification in the request.
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.html import partition_html
|
|
|
|
elements = partition_html(url="https://python.org/")
|
|
|
|
# you can also provide custom headers:
|
|
|
|
elements = partition_html(url="https://python.org/",
|
|
headers={"User-Agent": "YourScriptName/1.0 ..."})
|
|
|
|
# and turn off SSL verification
|
|
|
|
elements = partition_html(url="https://python.org/", ssl_verify=False)
|
|
|
|
|
|
|
|
If you website contains news articles, it can be helpful to only grab content that appears in
|
|
between the ``<article>`` tags, if the site uses that convention.
|
|
To activate this behavior, you can set ``html_assemble_articles=True``.
|
|
If ``html_assemble_articles`` is ``True``, each ``<article>`` tag will be treated as a a page.
|
|
If ``html_assemble_articles`` is ``True`` and no ``<article>`` tags are present, the behavior
|
|
is the same as ``html_assemble_articles=False``.
|
|
|
|
For more information about the ``partition_html`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/html.py>`__.
|
|
|
|
|
|
``partition_image``
|
|
---------------------
|
|
|
|
The ``partition_image`` function has the same API as ``partition_pdf``, which is document above.
|
|
The only difference is that ``partition_image`` does not need to convert a PDF to an image
|
|
prior to processing. The ``partition_image`` function supports ``.png``, ``.heic``, and ``.jpg`` files.
|
|
|
|
You can also specify what languages to use for OCR with the ``languages`` kwarg. For example,
|
|
use ``languages=["eng", "deu"]`` to use the English and German language packs. See the
|
|
`Tesseract documentation <https://github.com/tesseract-ocr/tessdata>`_ for a full list of languages and
|
|
install instructions.
|
|
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.image import partition_image
|
|
|
|
# Returns a List[Element] present in the pages of the parsed image document
|
|
elements = partition_image("example-docs/layout-parser-paper-fast.jpg")
|
|
|
|
# Applies the English and Swedish language pack for ocr
|
|
elements = partition_image("example-docs/layout-parser-paper-fast.jpg", languages=["eng", "swe"])
|
|
|
|
|
|
The ``strategy`` kwarg controls the method that will be used to process the PDF.
|
|
The available strategies for images are ``"auto"``, ``"hi_res"`` and ``"ocr_only"``.
|
|
|
|
The ``"auto"`` strategy will choose the partitioning strategy based on document characteristics and the function kwargs.
|
|
If ``infer_table_structure`` is passed, the strategy will be ``"hi_res"`` because that is the only strategy that
|
|
currently extracts tables for PDFs. Otherwise, ``"auto"`` will choose ``ocr_only``. ``"auto"`` is the default strategy.
|
|
|
|
The ``"hi_res"`` strategy will identify the layout of the document using ``detectron2``. The advantage of `"hi_res"` is that it
|
|
uses the document layout to gain additional information about document elements. We recommend using this strategy
|
|
if your use case is highly sensitive to correct classifications for document elements. If ``detectron2`` is not available,
|
|
the ``"hi_res"`` strategy will fall back to the ``"ocr_only"`` strategy.
|
|
|
|
The ``"ocr_only"`` strategy runs the document through Tesseract for OCR and then runs the raw text through ``partition_text``.
|
|
Currently, ``"hi_res"`` has difficulty ordering elements for documents with multiple columns. If you have a document with
|
|
multiple columns that does not have extractable text, we recoomend using the ``"ocr_only"`` strategy.
|
|
|
|
It is helpful to use ``"ocr_only"`` instead of ``"hi_res"``
|
|
if ``detectron2`` does not detect a text element in the image. To run example below, ensure you
|
|
have the Korean language pack for Tesseract installed on your system.
|
|
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.image import partition_image
|
|
|
|
filename = "example-docs/english-and-korean.png"
|
|
elements = partition_image(filename=filename, languages=["eng", "kor"], strategy="ocr_only")
|
|
|
|
For more information about the ``partition_image`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/image.py>`__.
|
|
|
|
|
|
``partition_md``
|
|
---------------------
|
|
|
|
The ``partition_md`` function provides the ability to parse markdown files. The
|
|
following workflow shows how to use ``partition_md``.
|
|
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.md import partition_md
|
|
|
|
elements = partition_md(filename="README.md")
|
|
|
|
For more information about the ``partition_md`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/md.py>`__.
|
|
|
|
|
|
``partition_msg``
|
|
-----------------
|
|
|
|
The ``partition_msg`` functions processes ``.msg`` files, which is a filetype specific
|
|
to email exports from Microsoft Outlook.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.msg import partition_msg
|
|
|
|
elements = partition_msg(filename="example-docs/fake-email.msg")
|
|
|
|
``partition_msg`` includes a ``max_partition`` parameter that indicates the maximum character
|
|
length for a document element.
|
|
This parameter only applies if ``"text/plain"`` is selected as the ``content_source``.
|
|
The default value is ``1500``, which roughly corresponds to
|
|
the average character length for a paragraph.
|
|
You can disable ``max_partition`` by setting it to ``None``.
|
|
|
|
|
|
You can optionally partition e-mail attachments by setting ``process_attachments=True``.
|
|
If you set ``process_attachments=True``, you'll also need to pass in a partitioning
|
|
function to ``attachment_partitioner``. The following is an example of what the
|
|
workflow looks like:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.auto import partition
|
|
from unstructured.partition.msg import partition_msg
|
|
|
|
filename = "example-docs/fake-email-attachment.msg"
|
|
elements = partition_msg(
|
|
filename=filename, process_attachments=True, attachment_partitioner=partition
|
|
)
|
|
|
|
If the content of an email is PGP encrypted, ``partition_msg`` will return an empty
|
|
list of elements and emit a warning indicated the email is encrypted.
|
|
|
|
For more information about the ``partition_msg`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/msg.py>`__.
|
|
|
|
|
|
``partition_multiple_via_api``
|
|
------------------------------
|
|
|
|
``partition_multiple_via_api`` is similar to ``partition_via_api``, but allows you to partition
|
|
multiple documents in a single REST API call. The result has the type ``List[List[Element]]``,
|
|
for example:
|
|
|
|
.. code:: python
|
|
|
|
[
|
|
[NarrativeText("Narrative!"), Title("Title!")],
|
|
[NarrativeText("Narrative!"), Title("Title!")]
|
|
]
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.api import partition_multiple_via_api
|
|
|
|
filenames = ["example-docs/fake-email.eml", "example-docs/fake.docx"]
|
|
|
|
documents = partition_multiple_via_api(filenames=filenames)
|
|
|
|
|
|
.. code:: python
|
|
|
|
from contextlib import ExitStack
|
|
|
|
from unstructured.partition.api import partition_multiple_via_api
|
|
|
|
filenames = ["example-docs/fake-email.eml", "example-docs/fake.docx"]
|
|
files = [open(filename, "rb") for filename in filenames]
|
|
|
|
with ExitStack() as stack:
|
|
files = [stack.enter_context(open(filename, "rb")) for filename in filenames]
|
|
documents = partition_multiple_via_api(files=files, metadata_filenames=filenames)
|
|
|
|
For more information about the ``partition_multiple_via_api`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/api.py>`__.
|
|
|
|
|
|
``partition_odt``
|
|
------------------
|
|
|
|
The ``partition_odt`` partitioning function pre-processes Open Office documents
|
|
saved in the ``.odt`` format. The function first converts the document
|
|
to ``.docx`` using ``pandoc`` and then processes it using ``partition_docx``.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.odt import partition_odt
|
|
|
|
elements = partition_odt(filename="example-docs/fake.odt")
|
|
|
|
For more information about the ``partition_odt`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/odt.py>`__.
|
|
|
|
|
|
``partition_org``
|
|
---------------------
|
|
|
|
The ``partition_org`` function processes Org Mode (``.org``) documents. The function
|
|
first converts the document to HTML using ``pandoc`` and then calls ``partition_html``.
|
|
You'll need `pandoc <https://pandoc.org/installing.html>`_ installed on your system
|
|
to use ``partition_org``.
|
|
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.org import partition_org
|
|
|
|
elements = partition_org(filename="example-docs/README.org")
|
|
|
|
For more information about the ``partition_org`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/org.py>`__.
|
|
|
|
|
|
``partition_pdf``
|
|
-----------------
|
|
|
|
The ``partition_pdf`` function segments a PDF document by using a document image analysis model.
|
|
If you set ``url=None``, the document image analysis model will execute locally. You need to install ``unstructured[local-inference]``
|
|
if you'd like to run inference locally.
|
|
If you set the URL, ``partition_pdf`` will make a call to a remote inference server.
|
|
``partition_pdf`` also includes a ``token`` function that allows you to pass in an authentication
|
|
token for a remote API call.
|
|
|
|
You can also specify what languages to use for OCR with the ``languages`` kwarg. For example,
|
|
use ``languages=["eng", "deu"]`` to use the English and German language packs. See the
|
|
`Tesseract documentation <https://github.com/tesseract-ocr/tessdata>`_ for a full list of languages and
|
|
install instructions. OCR is only applied if the text is not already available in the PDF document.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.pdf import partition_pdf
|
|
|
|
# Returns a List[Element] present in the pages of the parsed pdf document
|
|
elements = partition_pdf("example-docs/layout-parser-paper-fast.pdf")
|
|
|
|
# Applies the English and Swedish language pack for ocr. OCR is only applied
|
|
# if the text is not available in the PDF.
|
|
elements = partition_pdf("example-docs/layout-parser-paper-fast.pdf", languages=["eng", "swe"])
|
|
|
|
|
|
The ``strategy`` kwarg controls the method that will be used to process the PDF.
|
|
The available strategies for PDFs are ``"auto"``, ``"hi_res"``, ``"ocr_only"``, and ``"fast"``.
|
|
|
|
* The ``"auto"`` strategy will choose the partitioning strategy based on document characteristics and the function kwargs. If ``infer_table_structure`` is passed, the strategy will be ``"hi_res"`` because that is the only strategy that currently extracts tables for PDFs. Otherwise, ``"auto"`` will choose ``"fast"`` if the PDF text is extractable and ``"ocr_only"`` otherwise. ``"auto"`` is the default strategy.
|
|
|
|
* The ``"hi_res"`` strategy will identify the layout of the document using ``detectron2``. The advantage of `"hi_res"` is that it uses the document layout to gain additional information about document elements. We recommend using this strategy if your use case is highly sensitive to correct classifications for document elements. If ``detectron2`` is not available, the ``"hi_res"`` strategy will fall back to the ``"ocr_only"`` strategy.
|
|
|
|
* The ``"ocr_only"`` strategy runs the document through Tesseract for OCR and then runs the raw text through ``partition_text``. Currently, ``"hi_res"`` has difficulty ordering elements for documents with multiple columns. If you have a document with multiple columns that does not have extractable text, we recommend using the ``"ocr_only"`` strategy. ``"ocr_only"`` falls back to ``"fast"`` if Tesseract is not available and the document has extractable text.
|
|
|
|
* The ``"fast"`` strategy will extract the text using ``pdfminer`` and process the raw text with ``partition_text``. If the PDF text is not extractable, ``partition_pdf`` will fall back to ``"ocr_only"``. We recommend using the ``"fast"`` strategy in most cases where the PDF has extractable text.
|
|
|
|
To extract images and elements as image blocks from a PDF, it is mandatory to set ``strategy="hi_res"`` when setting ``extract_images_in_pdf=True``. With this configuration, detected images are saved in a specified directory or encoded within the file. However, keep in mind that ``extract_images_in_pdf`` is being phased out in favor of ``extract_image_block_types``. This option allows you to specify types of images or elements, like "Image" or "Table". If some extracted images have content clipped, you can adjust the padding by specifying two environment variables "EXTRACT_IMAGE_BLOCK_CROP_HORIZONTAL_PAD" and "EXTRACT_IMAGE_BLOCK_CROP_VERTICAL_PAD" (for example, EXTRACT_IMAGE_BLOCK_CROP_HORIZONTAL_PAD = 20, EXTRACT_IMAGE_BLOCK_CROP_VERTICAL_PAD = 10). For integrating these images directly into web applications or APIs, ``extract_image_block_to_payload`` can be used to convert them into ``base64`` format, including details about the image type, currently it's always ``image/jpeg``. Lastly, the ``extract_image_block_output_dir`` can be used to specify the filesystem path for saving the extracted images when not embedding them in payloads.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.pdf import partition_pdf
|
|
|
|
partition_pdf(
|
|
filename="path/to/your/pdf_file.pdf", # mandatory
|
|
strategy="hi_res", # mandatory to use ``hi_res`` strategy
|
|
extract_images_in_pdf=True, # mandatory to set as ``True``
|
|
extract_image_block_types=["Image", "Table"], # optional
|
|
extract_image_block_to_payload=False, # optional
|
|
extract_image_block_output_dir="path/to/save/images", # optional - only works when ``extract_image_block_to_payload=False``
|
|
)
|
|
|
|
|
|
If a PDF is copy protected, ``partition_pdf`` can process the document with the ``"hi_res"`` strategy (which
|
|
will treat it like an image), but cannot process the document with the ``"fast"`` strategy.
|
|
If the user chooses ``"fast"`` on a copy protected PDF, ``partition_pdf`` will fall back to the ``"hi_res"``
|
|
strategy. If ``detectron2`` is not installed, ``partition_pdf`` will fail for copy protected
|
|
PDFs because the document will not be processable by any of the available methods.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.pdf import partition_pdf
|
|
|
|
# This will process without issue
|
|
elements = partition_pdf("example-docs/copy-protected.pdf", strategy="hi_res")
|
|
|
|
# This will output a warning and fall back to hi_res
|
|
elements = partition_pdf("example-docs/copy-protected.pdf", strategy="fast")
|
|
|
|
|
|
``partition_pdf`` includes a ``max_partition`` parameter that indicates the maximum character
|
|
length for a document element.
|
|
This parameter only applies if the ``"ocr_only"`` strategy is used for partitioning.
|
|
The default value is ``1500``, which roughly corresponds to
|
|
the average character length for a paragraph.
|
|
You can disable ``max_partition`` by setting it to ``None``.
|
|
|
|
For more information about the ``partition_pdf`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/pdf.py>`__.
|
|
|
|
|
|
``partition_ppt``
|
|
---------------------
|
|
|
|
The ``partition_ppt`` partitioning function pre-processes Microsoft PowerPoint documents
|
|
saved in the ``.ppt`` format. This partition function uses a combination of the styling
|
|
information in the document and the structure of the text to determine the type
|
|
of a text element. The ``partition_ppt`` can take a filename or file-like object.
|
|
``partition_ppt`` uses ``libreoffice`` to convert the file to ``.pptx`` and then
|
|
calls ``partition_pptx``. Ensure you have ``libreoffice`` installed
|
|
before using ``partition_ppt``.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.ppt import partition_ppt
|
|
|
|
elements = partition_ppt(filename="example-docs/fake-power-point.ppt")
|
|
|
|
For more information about the ``partition_ppt`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/ppt.py>`__.
|
|
|
|
|
|
``partition_pptx``
|
|
---------------------
|
|
|
|
The ``partition_pptx`` partitioning function pre-processes Microsoft PowerPoint documents
|
|
saved in the ``.pptx`` format. This partition function uses a combination of the styling
|
|
information in the document and the structure of the text to determine the type
|
|
of a text element. The ``partition_pptx`` can take a filename or file-like object
|
|
as input, as shown in the two examples below.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.pptx import partition_pptx
|
|
|
|
elements = partition_pptx(filename="example-docs/fake-power-point.pptx")
|
|
|
|
with open("example-docs/fake-power-point.pptx", "rb") as f:
|
|
elements = partition_pptx(file=f)
|
|
|
|
For more information about the ``partition_pptx`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/pptx.py>`__.
|
|
|
|
|
|
``partition_rst``
|
|
---------------------
|
|
|
|
The ``partition_rst`` function processes ReStructured Text (``.rst``) documents. The function
|
|
first converts the document to HTML using ``pandoc`` and then calls ``partition_html``.
|
|
You'll need `pandoc <https://pandoc.org/installing.html>`_ installed on your system
|
|
to use ``partition_rst``.
|
|
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.rst import partition_rst
|
|
|
|
elements = partition_rst(filename="example-docs/README.rst")
|
|
|
|
For more information about the ``partition_rst`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/rst.py>`__.
|
|
|
|
|
|
``partition_rtf``
|
|
---------------------
|
|
|
|
The ``partition_rtf`` function processes rich text files. The function
|
|
first converts the document to HTML using ``pandocs`` and then calls ``partition_html``.
|
|
You'll need `pandocs <https://pandoc.org/installing.html>`_ installed on your system
|
|
to use ``partition_rtf``.
|
|
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.rtf import partition_rtf
|
|
|
|
elements = partition_rtf(filename="example-docs/fake-doc.rtf")
|
|
|
|
For more information about the ``partition_rtf`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/rtf.py>`__.
|
|
|
|
|
|
``partition_text``
|
|
---------------------
|
|
|
|
The ``partition_text`` function partitions text files. The ``partition_text``
|
|
takes a filename, file-like object, and raw text as input and produces ``Element`` objects as output.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.text import partition_text
|
|
|
|
elements = partition_text(filename="example-docs/fake-text.txt")
|
|
|
|
with open("example-docs/fake-text.txt", "r") as f:
|
|
elements = partition_text(file=f)
|
|
|
|
with open("example-docs/fake-text.txt", "r") as f:
|
|
text = f.read()
|
|
elements = partition_text(text=text)
|
|
|
|
If the text has extra line breaks for formatting purposes, you can group
|
|
together the broken text using the ``paragraph_grouper`` kwarg. The
|
|
``paragraph_grouper`` kwarg is a function that accepts a string and returns
|
|
another string.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.text import partition_text
|
|
from unstructured.cleaners.core import group_broken_paragraphs
|
|
|
|
|
|
text = """The big brown fox
|
|
was walking down the lane.
|
|
|
|
At the end of the lane, the
|
|
fox met a bear."""
|
|
|
|
partition_text(text=text, paragraph_grouper=group_broken_paragraphs)
|
|
|
|
``partition_text`` includes a ``max_partition`` parameter that indicates the maximum character
|
|
length for a document element.
|
|
The default value is ``1500``, which roughly corresponds to
|
|
the average character length for a paragraph.
|
|
You can disable ``max_partition`` by setting it to ``None``.
|
|
|
|
For more information about the ``partition_text`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/text.py>`__.
|
|
|
|
|
|
``partition_tsv``
|
|
------------------
|
|
|
|
The ``partition_tsv`` function pre-processes TSV files. The output is a single
|
|
``Table`` element. The ``text_as_html`` attribute in the element metadata will
|
|
contain an HTML representation of the table.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.tsv import partition_tsv
|
|
|
|
elements = partition_tsv(filename="example-docs/stanley-cups.tsv")
|
|
print(elements[0].metadata.text_as_html)
|
|
|
|
For more information about the ``partition_tsv`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/main/unstructured/partition/tsv.py>`__.
|
|
|
|
|
|
``partition_via_api``
|
|
---------------------
|
|
|
|
``partition_via_api`` allows users to partition documents using the hosted Unstructured API.
|
|
The API partitions documents using the automatic ``partition`` function.
|
|
This is helpful if you're hosting
|
|
the API yourself or running it locally through a container. You can pass in your API key
|
|
using the ``api_key`` kwarg. You can use the ``content_type`` kwarg to pass in the MIME
|
|
type for the file. If you do not explicitly pass it, the MIME type will be inferred.
|
|
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.api import partition_via_api
|
|
|
|
filename = "example-docs/eml/fake-email.eml"
|
|
|
|
elements = partition_via_api(filename=filename, api_key="MY_API_KEY", content_type="message/rfc822")
|
|
|
|
with open(filename, "rb") as f:
|
|
elements = partition_via_api(file=f, metadata_filename=filename, api_key="MY_API_KEY")
|
|
|
|
|
|
You can pass additional settings such as ``strategy``, ``languages`` and ``encoding`` to the
|
|
API through optional kwargs. These options get added to the request body when the
|
|
API is called.
|
|
See `the API documentation <https://api.unstructured.io/general/docs>`_ for a full list of
|
|
settings supported by the API.
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.api import partition_via_api
|
|
|
|
filename = "example-docs/DA-1p.pdf"
|
|
|
|
elements = partition_via_api(
|
|
filename=filename, api_key=api_key, strategy="auto"
|
|
)
|
|
|
|
If you are using the `Unstructured SaaS API <https://unstructured-io.github.io/unstructured/apis/saas_api.html>`__, you can use the ``api_url`` kwarg to point the ``partition_via_api`` function at your Unstructured SaaS API URL.
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.api import partition_via_api
|
|
|
|
filename = "example-docs/eml/fake-email.eml"
|
|
|
|
elements = partition_via_api(
|
|
filename=filename,
|
|
api_key=<<REPLACE WITH YOUR API KEY>>,
|
|
api_url="https://<<REPLACE WITH YOUR API URL>>/general/v0/general"
|
|
)
|
|
|
|
If you are self-hosting or running the API locally, you can use the ``api_url`` kwarg
|
|
to point the ``partition_via_api`` function at your self-hosted or local API.
|
|
See `here <https://github.com/Unstructured-IO/unstructured-api#dizzy-instructions-for-using-the-docker-image>`_ for
|
|
documentation on how to run the API as a container locally.
|
|
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.api import partition_via_api
|
|
|
|
filename = "example-docs/eml/fake-email.eml"
|
|
|
|
elements = partition_via_api(
|
|
filename=filename,
|
|
api_url="http://localhost:5000/general/v0/general"
|
|
)
|
|
|
|
For more information about the ``partition_via_api`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/api.py>`__.
|
|
|
|
|
|
``partition_xlsx``
|
|
------------------
|
|
|
|
The ``partition_xlsx`` function pre-processes Microsoft Excel documents. Each
|
|
sheet in the Excel file will be stored as a ``Table`` object. The plain text
|
|
of the sheet will be the ``text`` attribute of the ``Table``. The ``text_as_html``
|
|
attribute in the element metadata will contain an HTML representation of the table.
|
|
|
|
Examples:
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.xlsx import partition_xlsx
|
|
|
|
elements = partition_xlsx(filename="example-docs/stanley-cups.xlsx")
|
|
print(elements[0].metadata.text_as_html)
|
|
|
|
For more information about the ``partition_xlsx`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/xlsx.py>`__.
|
|
|
|
|
|
``partition_xml``
|
|
-----------------
|
|
|
|
The ``partition_xml`` function processes XML documents.
|
|
If ``xml_keep_tags=False``, the function only returns the text attributes from the tags.
|
|
You can use ``xml_path`` in conjuntion with ``xml_keep_tags=False`` to restrict the text
|
|
extraction to specific tags.
|
|
If ``xml_keep_tags=True``, the function returns tag information in addition to tag text.
|
|
``xml_keep_tags`` is ``False`` be default.
|
|
|
|
|
|
.. code:: python
|
|
|
|
from unstructured.partition.xml import partition_xml
|
|
|
|
elements = partition_xml(filename="example-docs/factbook.xml", xml_keep_tags=True)
|
|
|
|
elements = partition_xml(filename="example-docs/factbook.xml", xml_keep_tags=False)
|
|
|
|
For more information about the ``partition_xml`` function, you can check the `source code here <https://github.com/Unstructured-IO/unstructured/blob/a583d47b841bdd426b9058b7c34f6aa3ed8de152/unstructured/partition/xml.py>`__.
|