unstructured/examples/mysql/load-into-mysql.ipynb
Matt Robinson 19beb24e03
docs: unstructured -> MySQL example (#557)
* added requirements for mysql

* first bit of mysql notebook

* update requirements file

* wrap with mysql example

* update readme with install instructions
2023-05-09 13:26:49 +00:00

502 lines
14 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "57eeca7e",
"metadata": {},
"source": [
"# Loading Data into MySQL\n",
"\n",
"The goal of this notebook is to show you how to load `unstructured` outputs into MySQL. This allows you to retrieve pre-processed text based on metadata fields that `unstructured` extracts.\n",
"\n",
"If you don't have MySQL installed on your system yet, you can follow the instructions [here](https://dev.mysql.com/doc/refman/5.7/en/installing.html) to get it installed. If you haven't already, run `pip install -r requirements.txt` in the base directory of the example folder to install the Python dependencies."
]
},
{
"cell_type": "markdown",
"id": "566328b8",
"metadata": {},
"source": [
"# Preprocess Documents with Unstructured\n",
"\n",
"First, we'll pre-process a few documents using the the `unstructured` libraries. The example documents are available under the `example-docs` directory in the `unstructured` repo. At the end of this section, we'll wind up with a list of `Element` objects that we can pass into an `unstructured` staging brick."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "98122cd4",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"from unstructured.partition.auto import partition"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "ece16580",
"metadata": {},
"outputs": [],
"source": [
"# NOTE: Update this directory if you are running the notebook\n",
"# from somewhere other than the examples/mysql folder in the\n",
"# unstructured repo\n",
"EXAMPLE_DOCS_FOLDER = \"../../example-docs/\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c9d970f4",
"metadata": {},
"outputs": [],
"source": [
"documents_to_process = [\n",
" \"fake-email.eml\",\n",
" \"fake.docx\",\n",
" \"layout-parser-paper-fast.pdf\",\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "570a70bb",
"metadata": {},
"outputs": [],
"source": [
"elements = []\n",
"for document in documents_to_process:\n",
" filename = os.path.join(EXAMPLE_DOCS_FOLDER, document)\n",
" elements.extend(partition(filename=filename, strategy=\"fast\"))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "73e2a698",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'This is a test email to use for unit tests.'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"elements[0].text"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "4e47b525",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'filename': '../../example-docs/fake-email.eml',\n",
" 'date': '2022-12-16T17:04:16-05:00',\n",
" 'sent_from': ['Matthew Robinson <mrobinson@unstructured.io>'],\n",
" 'sent_to': ['Matthew Robinson <mrobinson@unstructured.io>'],\n",
" 'subject': 'Test Email'}"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"elements[0].metadata.to_dict()"
]
},
{
"cell_type": "markdown",
"id": "1d68f22d",
"metadata": {},
"source": [
"## Convert the Unstructured Outputs to a Dataframe\n",
"\n",
"Now that we have the document outputs as a list of `Element` objects, we can convert the list to a dataframe using the `convert_to_dataframe` staging brick. With the elements in dataframe format, we can now see the text and type along side various document metadata."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "805e967f",
"metadata": {},
"outputs": [],
"source": [
"from unstructured.staging.base import convert_to_dataframe"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "a3b76a17",
"metadata": {},
"outputs": [],
"source": [
"elements_df = convert_to_dataframe(elements)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "89e4125f",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>type</th>\n",
" <th>text</th>\n",
" <th>element_id</th>\n",
" <th>coordinates</th>\n",
" <th>filename</th>\n",
" <th>page_number</th>\n",
" <th>url</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>NarrativeText</td>\n",
" <td>This is a test email to use for unit tests.</td>\n",
" <td>f49fbd614ddf5b72e06f59e554e6ae2b</td>\n",
" <td>NaN</td>\n",
" <td>../../example-docs/fake-email.eml</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Title</td>\n",
" <td>Important points:</td>\n",
" <td>9c218520320f238595f1fde74bdd137d</td>\n",
" <td>NaN</td>\n",
" <td>../../example-docs/fake-email.eml</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>ListItem</td>\n",
" <td>Roses are red</td>\n",
" <td>8522061b991b1db70453502d328fe07e</td>\n",
" <td>NaN</td>\n",
" <td>../../example-docs/fake-email.eml</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>ListItem</td>\n",
" <td>Violets are blue</td>\n",
" <td>c3c4527761d4e4b8d0a4c4a0d46954c8</td>\n",
" <td>NaN</td>\n",
" <td>../../example-docs/fake-email.eml</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Title</td>\n",
" <td>Lorem ipsum dolor sit amet.</td>\n",
" <td>dd14cbbf0e74909aac7f248a85d190af</td>\n",
" <td>NaN</td>\n",
" <td>../../example-docs/fake.docx</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" type text \\\n",
"0 NarrativeText This is a test email to use for unit tests. \n",
"1 Title Important points: \n",
"2 ListItem Roses are red \n",
"3 ListItem Violets are blue \n",
"4 Title Lorem ipsum dolor sit amet. \n",
"\n",
" element_id coordinates \\\n",
"0 f49fbd614ddf5b72e06f59e554e6ae2b NaN \n",
"1 9c218520320f238595f1fde74bdd137d NaN \n",
"2 8522061b991b1db70453502d328fe07e NaN \n",
"3 c3c4527761d4e4b8d0a4c4a0d46954c8 NaN \n",
"4 dd14cbbf0e74909aac7f248a85d190af NaN \n",
"\n",
" filename page_number url \n",
"0 ../../example-docs/fake-email.eml NaN NaN \n",
"1 ../../example-docs/fake-email.eml NaN NaN \n",
"2 ../../example-docs/fake-email.eml NaN NaN \n",
"3 ../../example-docs/fake-email.eml NaN NaN \n",
"4 ../../example-docs/fake.docx NaN NaN "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"elements_df.head()"
]
},
{
"cell_type": "markdown",
"id": "a881fff4",
"metadata": {},
"source": [
"## Load the Documents into MySQL\n",
"\n",
"Once the `unstructured` elements are converted to a dataframe, we can easily upload them to MySQL using built-in `pandas` utilities. In this case, we'll upload the documents using a connection created with the `sqlalchemy` libary. \n",
"\n",
"Run `export MYSQL_PWD=<my-password>` to store your MySQL password in as an environment variable. You can accomplish this using other MySQL clients as well. In the `elements_df.to_sql` block, you can change `if_exists` to `\"append\"` if you would like to add to a table instead of replacing it."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "dd05592a",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"import pandas as pd\n",
"from sqlalchemy import create_engine, text"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "0181db92",
"metadata": {},
"outputs": [],
"source": [
"# NOTE: update these values to reflect the username/password/database\n",
"# name that you created in MySQL\n",
"user = \"matt\"\n",
"pwd = os.environ.get(\"MYSQL_PWD\")\n",
"host = \"localhost\"\n",
"db = \"unstructured_example\""
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "d03c50a8",
"metadata": {},
"outputs": [],
"source": [
"engine = create_engine(\n",
" f\"mysql+mysqlconnector://{user}:{pwd}@{host}/{db}\",\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "ff49d2f4",
"metadata": {},
"outputs": [],
"source": [
"table_name = \"processed_documents\""
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "01fc4043",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"-1"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"elements_df.to_sql(\n",
" name=table_name,\n",
" con=engine,\n",
" if_exists=\"replace\",\n",
" index=False\n",
")"
]
},
{
"cell_type": "markdown",
"id": "b621bd38",
"metadata": {},
"source": [
"## Read the Documents from MySQL\n",
"\n",
"Now that the documents are loaded into MySQL, you can run queries that retrieve document snippets based on metadata that `unstructured` has extracted. In this case, we show an example of how to retrieve all of the narrative text from a specific document."
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "5b03d965",
"metadata": {},
"outputs": [],
"source": [
"sql = \"\"\"\n",
"SELECT *\n",
"FROM unstructured_example.processed_documents\n",
"WHERE type = \"NarrativeText\"\n",
"AND filename LIKE '%fake-email.eml%'\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "049c45fb",
"metadata": {},
"outputs": [],
"source": [
"with engine.begin() as conn:\n",
" elements_read_df = pd.read_sql_query(sql=text(sql), con=conn)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "92bd2fb1",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>type</th>\n",
" <th>text</th>\n",
" <th>element_id</th>\n",
" <th>coordinates</th>\n",
" <th>filename</th>\n",
" <th>page_number</th>\n",
" <th>url</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>NarrativeText</td>\n",
" <td>This is a test email to use for unit tests.</td>\n",
" <td>f49fbd614ddf5b72e06f59e554e6ae2b</td>\n",
" <td>None</td>\n",
" <td>../../example-docs/fake-email.eml</td>\n",
" <td>None</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" type text \\\n",
"0 NarrativeText This is a test email to use for unit tests. \n",
"\n",
" element_id coordinates \\\n",
"0 f49fbd614ddf5b72e06f59e554e6ae2b None \n",
"\n",
" filename page_number url \n",
"0 ../../example-docs/fake-email.eml None None "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"elements_read_df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "df3ea81c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}