unstructured/test_unstructured_ingest/python/test-ingest-astradb-output.py
David Potter 59ec64235b
chore: rename astra to astradb (#3458)
DataStax wanted all references to be astradb instead of astra. As per
@erichare

We'll also have to do the same in unstructured-ingest :)
2024-08-05 20:41:02 +00:00

80 lines
2.6 KiB
Python
Executable File

#!/usr/bin/env python
import click
from astrapy.db import AstraDB
def get_client(token, api_endpoint, collection_name) -> AstraDB:
# Initialize our vector db
astra_db = AstraDB(token=token, api_endpoint=api_endpoint)
astra_db_collection = astra_db.collection(collection_name)
return astra_db, astra_db_collection
@click.group(name="astradb-ingest")
@click.option("--token", type=str)
@click.option("--api-endpoint", type=str)
@click.option("--collection-name", type=str, default="collection_test")
@click.option("--embedding-dimension", type=int, default=384)
@click.pass_context
def cli(ctx, token: str, api_endpoint: str, collection_name: str, embedding_dimension: int):
# ensure that ctx.obj exists and is a dict (in case `cli()` is called
ctx.ensure_object(dict)
ctx.obj["db"], ctx.obj["collection"] = get_client(token, api_endpoint, collection_name)
@cli.command()
@click.pass_context
def check(ctx):
collection_name = ctx.parent.params["collection_name"]
print(f"Checking contents of Astra DB collection: {collection_name}")
astra_db_collection = ctx.obj["collection"]
# Tally up the embeddings
docs_count = astra_db_collection.count_documents()
number_of_embeddings = docs_count["status"]["count"]
# Print the results
expected_embeddings = 3
print(
f"# of embeddings in collection vs expected: {number_of_embeddings}/{expected_embeddings}"
)
# Check that the assertion is true
assert number_of_embeddings == expected_embeddings, (
f"Number of rows in generated table ({number_of_embeddings})"
f"doesn't match expected value: {expected_embeddings}"
)
# Grab an embedding from the collection and search against itself
# Should get the same document back as the most similar
find_one = astra_db_collection.find_one(projection={"*": 1})
random_vector = find_one["data"]["document"]["$vector"]
random_text = find_one["data"]["document"]["content"]
# Perform a similarity search
find_result = astra_db_collection.vector_find(
random_vector,
limit=1,
fields=["*"],
)
# Check that we retrieved the coded cleats copy data
assert find_result[0]["content"] == random_text
print("Vector search complete.")
@cli.command()
@click.pass_context
def down(ctx):
astra_db = ctx.obj["db"]
collection_name = ctx.parent.params["collection_name"]
print(f"deleting collection: {collection_name}")
astra_db.delete_collection(collection_name)
print(f"successfully deleted collection: {collection_name}")
if __name__ == "__main__":
cli()