unstructured/examples/weaviate/weaviate.ipynb
Matt Robinson c35fff2972
feat: Add stage_for_weaviate and schema creation function (#672)
* add weaviate docker compose

* added staging brick and tests for weaviate

* initial notebook and requirements file

* add commentary to weaviate notebook

* weaviate readme

* update docs

* version and change log

* install weaviate client

* install weaviate; skip for docker

* linting, linting, linting

* install weaviate client with deps

* comments on weaviate client

* fix module not found error for docker container

* skipped wrong test in docker

* fix typos

* add in local-inference
2023-06-01 20:48:54 +00:00

216 lines
6.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"id": "a3ce962e",
"metadata": {},
"source": [
"## Loading Data into Weaviate with `unstructured`\n",
"\n",
"This notebook shows a basic workflow for uploading document elements into Weaviate using the `unstructured` library. To get started with this notebook, first install the dependencies with `pip install -r requirements.txt` and start the Weaviate docker container with `docker-compose up`."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "5d9ffc17",
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"\n",
"import tqdm\n",
"from unstructured.partition.pdf import partition_pdf\n",
"from unstructured.staging.weaviate import create_unstructured_weaviate_class, stage_for_weaviate\n",
"import weaviate\n",
"from weaviate.util import generate_uuid5"
]
},
{
"cell_type": "markdown",
"id": "673715e9",
"metadata": {},
"source": [
"The first step is to partition the document using the `unstructured` library. In the following example, we partition a PDF with `partition_pdf`. You can also partition over a dozen document types with the `partition` function."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f9fc0cf9",
"metadata": {},
"outputs": [],
"source": [
"filename = \"../../example-docs/layout-parser-paper-fast.pdf\"\n",
"elements = partition_pdf(filename=filename, strategy=\"fast\")"
]
},
{
"cell_type": "markdown",
"id": "3ae76364",
"metadata": {},
"source": [
"Next, we'll create a schema for our Weaviate database using the `create_unstructured_weaviate_class` helper function from the `unstructured` library. The helper function generates a schema that includes all of the elements in the `ElementMetadata` object from `unstructured`. This includes information such as the filename and the page number of the document element. After specifying the schema, we create a connection to the database with the Weaviate client library and create the schema. You can change the name of the class by updating the `unstructured_class_name` variable."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "91057cb1",
"metadata": {},
"outputs": [],
"source": [
"unstructured_class_name = \"UnstructuredDocument\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "78e804bb",
"metadata": {},
"outputs": [],
"source": [
"unstructured_class = create_unstructured_weaviate_class(unstructured_class_name)\n",
"schema = {\"classes\": [unstructured_class]} "
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3e317a2d",
"metadata": {},
"outputs": [],
"source": [
"client = weaviate.Client(\"http://localhost:8080\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0c508784",
"metadata": {},
"outputs": [],
"source": [
"client.schema.create(schema)"
]
},
{
"cell_type": "markdown",
"id": "024ae133",
"metadata": {},
"source": [
"Next, we stage the elements for Weaviate using the `stage_for_weaviate` function and batch upload the results to Weaviate. `stage_for_weaviate` outputs a dictionary that conforms to the schema we created earlier. Once that data is stage, we can use the Weaviate client library to batch upload the results to Weaviate."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "a7018bb1",
"metadata": {},
"outputs": [],
"source": [
"data_objects = stage_for_weaviate(elements)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "af712d8e",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████████████████████████████████████████████████████████████████| 28/28 [00:46<00:00, 1.66s/it]\n"
]
}
],
"source": [
"with client.batch(batch_size=10) as batch:\n",
" for data_object in tqdm.tqdm(data_objects):\n",
" batch.add_data_object(\n",
" data_object,\n",
" unstructured_class_name,\n",
" uuid=generate_uuid5(data_object),\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "dac10bf5",
"metadata": {},
"source": [
"Now that the documents are in Weaviate, we're able to run queries against Weaviate!"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "14098434",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{\n",
" \"data\": {\n",
" \"Get\": {\n",
" \"UnstructuredDocument\": [\n",
" {\n",
" \"text\": \"Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of document image analysis (DIA) tasks including document image classi\\ufb01cation [11,\"\n",
" }\n",
" ]\n",
" }\n",
" }\n",
"}\n"
]
}
],
"source": [
"near_text = {\"concepts\": [\"document understanding\"]}\n",
"\n",
"result = (\n",
" client.query\n",
" .get(\"UnstructuredDocument\", [\"text\"])\n",
" .with_near_text(near_text)\n",
" .with_limit(1)\n",
" .do()\n",
")\n",
"\n",
"print(json.dumps(result, indent=4))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c191217c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}