unstructured/test_unstructured/metrics/test_table_structure.py
Pluto 5d89b41b1a
Fix not counting false negatives and false positives in table metrics (#3300)
This pull request fixes counting tables metric for three cases:
- False Negatives: when table exist in ground truth but any of the
predicted tables doesn't match the table, the table should count as 0
and the file should not be completely skipped (before it was np.NaN).
- False Positives: When there is a predicted table that didn't match any
ground truth table it should be counted as 0, right now it is skipped in
processing (matched_indices==-1)
- The file should be completely skipped only if there is no tables in
ground truth and in prediction

In short we can say that previous metric calculation didn't consider OD
mistakes
2024-07-02 10:07:24 +00:00

700 lines
19 KiB
Python

from unittest import mock
import numpy as np
import pytest
from unstructured.metrics.table.table_alignment import TableAlignment
from unstructured.metrics.table.table_eval import TableEvalProcessor
from unstructured.metrics.table_structure import (
eval_table_transformer_for_file,
image_or_pdf_to_dataframe,
)
@pytest.mark.parametrize(
"filename",
[
"example-docs/table-multi-row-column-cells.png",
"example-docs/table-multi-row-column-cells.pdf",
],
)
def test_image_or_pdf_to_dataframe(filename):
df = image_or_pdf_to_dataframe(filename)
assert ["Blind", "5", "1", "4", "34.5%, n=1", "1199 sec, n=1"] in df.values
def test_eval_table_transformer_for_file():
score = eval_table_transformer_for_file(
"example-docs/table-multi-row-column-cells.png",
"example-docs/table-multi-row-column-cells-actual.csv",
)
# avoid severe degradation of performance
assert 0.8 < score < 1
def test_table_eval_processor_simple():
prediction = [
{
"type": "Table",
"metadata": {
"text_as_html": """<table><thead><tr><th>r1c1</th><th>r1c2</th></tr></thead>
<tbody><tr><td>r2c1</td><td>r2c2</td></tr></tbody></table>"""
},
}
]
ground_truth = [
{
"type": "Table",
"text": [
{
"id": "ee862c7a-d27e-4484-92de-4faa42a63f3b",
"x": 0,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c1",
},
{
"id": "6237ac7b-bfc8-40d2-92f2-d138277205e2",
"x": 0,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c1",
},
{
"id": "9d0933a9-5984-4cad-80d9-6752bf9bc4df",
"x": 1,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c2",
},
{
"id": "1152d043-5ead-4ab8-8b88-888d48831ac2",
"x": 1,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c2",
},
],
}
]
te_processor = TableEvalProcessor(prediction, ground_truth)
result = te_processor.process_file()
assert result.total_tables == 1
assert result.table_level_acc == 1.0
assert result.element_row_level_index_acc == 1.0
assert result.element_col_level_index_acc == 1.0
assert result.element_row_level_content_acc == 1.0
assert result.element_col_level_content_acc == 1.0
def test_table_eval_processor_simple_when_input_as_cells():
prediction = [
{
"type": "Table",
"metadata": {
"table_as_cells": [
{
"x": 1,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c2",
},
{
"x": 0,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c1",
},
{
"x": 0,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c1",
},
{
"x": 1,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c2",
},
]
},
}
]
ground_truth = [
{
"type": "Table",
"text": [
{
"id": "ee862c7a-d27e-4484-92de-4faa42a63f3b",
"x": 0,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c1",
},
{
"id": "6237ac7b-bfc8-40d2-92f2-d138277205e2",
"x": 0,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c1",
},
{
"id": "9d0933a9-5984-4cad-80d9-6752bf9bc4df",
"x": 1,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c2",
},
{
"id": "1152d043-5ead-4ab8-8b88-888d48831ac2",
"x": 1,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c2",
},
],
}
]
te_processor = TableEvalProcessor(prediction, ground_truth, source_type="cells")
result = te_processor.process_file()
assert result.total_tables == 1
assert result.table_level_acc == 1.0
assert result.element_row_level_index_acc == 1.0
assert result.element_col_level_index_acc == 1.0
assert result.element_row_level_content_acc == 1.0
assert result.element_col_level_content_acc == 1.0
def test_table_eval_processor_when_wrong_source_type():
prediction = [
{
"type": "Table",
"metadata": {"table_as_cells": []},
}
]
ground_truth = [
{
"type": "Table",
"text": [],
}
]
te_processor = TableEvalProcessor(prediction, ground_truth, source_type="wrong_type")
with pytest.raises(ValueError):
te_processor.process_file()
@pytest.mark.parametrize(
"text_as_html",
[
"""
<table>
<thead>
<tr>
<th>r1c1</th>
<th>r1c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r2c1</td>
<td>r2c2</td>
</tr>
<tr>
<td>r3c1</td>
<td>r3c2</td>
</tr>
</tbody>
</table>
""",
"""
<table>
<tr>
<th>r1c1</th>
<th>r1c2</th>
</tr>
<tbody>
<tr>
<td>r2c1</td>
<td>r2c2</td>
</tr>
<tr>
<td>r3c1</td>
<td>r3c2</td>
</tr>
</tbody>
</table>
""",
"""
<table>
</tbody>
<tr>
<td>r1c1</td>
<td>r1c2</td>
</tr>
<tr>
<td>r2c1</td>
<td>r2c2</td>
</tr>
<tr>
<td>r3c1</td>
<td>r3c2</td>
</tr>
</tbody>
</table>
""",
],
)
def test_table_eval_processor_various_table_html_structures(text_as_html):
prediction = [{"type": "Table", "metadata": {"text_as_html": text_as_html}}]
ground_truth = [
{
"type": "Table",
"text": [
{
"id": "ee862c7a-d27e-4484-92de-4faa42a63f3b",
"x": 0,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c1",
},
{
"id": "6237ac7b-bfc8-40d2-92f2-d138277205e2",
"x": 0,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c1",
},
{
"id": "9d0933a9-5984-4cad-80d9-6752bf9bc4df",
"x": 1,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c2",
},
{
"id": "1152d043-5ead-4ab8-8b88-888d48831ac2",
"x": 1,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c2",
},
{
"id": "364f4a17-2979-4506-ae77-e8adf8e3f554",
"x": 0,
"y": 2,
"w": 1,
"h": 1,
"content": "r3c1",
},
{
"id": "30f87503-ac1f-4db1-b924-b316af585702",
"x": 1,
"y": 2,
"w": 1,
"h": 1,
"content": "r3c2",
},
],
}
]
te_processor = TableEvalProcessor(prediction, ground_truth)
result = te_processor.process_file()
assert result.total_tables == 1
assert result.table_level_acc == 1.0
assert result.element_row_level_index_acc == 1.0
assert result.element_col_level_index_acc == 1.0
assert result.element_row_level_content_acc == 1.0
assert result.element_col_level_content_acc == 1.0
def test_table_eval_processor_non_str_values_in_table():
prediction = [
{
"type": "Table",
"metadata": {
"text_as_html": """
<table>
<thead>
<tr>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>"""
},
}
]
ground_truth = [
{
"type": "Table",
"text": [
{
"id": "ee862c7a-d27e-4484-92de-4faa42a63f3b",
"x": 0,
"y": 0,
"w": 1,
"h": 1,
"content": "11",
},
{
"id": "6237ac7b-bfc8-40d2-92f2-d138277205e2",
"x": 0,
"y": 1,
"w": 1,
"h": 1,
"content": "21",
},
{
"id": "9d0933a9-5984-4cad-80d9-6752bf9bc4df",
"x": 1,
"y": 0,
"w": 1,
"h": 1,
"content": "12",
},
{
"id": "1152d043-5ead-4ab8-8b88-888d48831ac2",
"x": 1,
"y": 1,
"w": 1,
"h": 1,
"content": "22",
},
],
}
]
te_processor = TableEvalProcessor(prediction, ground_truth)
result = te_processor.process_file()
assert result.total_tables == 1
assert result.table_level_acc == 1.0
assert result.element_row_level_index_acc == 1.0
assert result.element_col_level_index_acc == 1.0
assert result.element_row_level_content_acc == 1.0
assert result.element_col_level_content_acc == 1.0
def test_table_eval_processor_merged_cells():
prediction = [
{
"type": "Table",
"metadata": {
"text_as_html": """
<table>
<thead>
<tr>
<th rowspan="2">r1c1</th>
<th>r1c2</th>
<th colspan="2">r1c3</th>
</tr>
<tr>
<th>r2c2</th>
<th>r2c3</th>
<th>r2c4</th>
</tr>
</thead>
<tbody>
<tr>
<td>r3c1</td>
<td>r3c2</td>
<td colspan="2" rowspan="2">r3c3</td>
</tr>
<tr>
<td>r4c1</td>
<td>r4c2</td>
</tr>
</tbody>
</table>
"""
},
}
]
ground_truth = [
{
"type": "Table",
"text": [
{
"id": "f399ef57-5b88-4509-8971-9cb63246866e",
"x": 0,
"y": 0,
"w": 1,
"h": 2,
"content": "r1c1",
},
{
"id": "2dfdec2f-e8f3-4be7-a6ac-8ff21c4e8556",
"x": 0,
"y": 2,
"w": 1,
"h": 1,
"content": "r3c1",
},
{
"id": "9c771c58-88c7-49d8-9c12-85d0e44b920e",
"x": 0,
"y": 3,
"w": 1,
"h": 1,
"content": "r4c1",
},
{
"id": "5bd6f3f0-34c5-495b-8a28-c4ac96989ef8",
"x": 1,
"y": 0,
"w": 1,
"h": 1,
"content": "r1c2",
},
{
"id": "7b8e6bc2-a310-4dd6-997c-313f951e7f96",
"x": 1,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c2",
},
{
"id": "1c152ad4-12fa-4a7b-90de-a992aa6410a4",
"x": 1,
"y": 2,
"w": 1,
"h": 1,
"content": "r3c2",
},
{
"id": "55063f64-0003-4217-b6ca-aff5914793ff",
"x": 1,
"y": 3,
"w": 1,
"h": 1,
"content": "r4c2",
},
{
"id": "22852e86-0e22-4d32-b63a-9ba7dd4118a2",
"x": 2,
"y": 0,
"w": 2,
"h": 1,
"content": "r1c3",
},
{
"id": "eae013c5-5597-4a8b-9771-82e28c5c5cba",
"x": 2,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c3",
},
{
"id": "0dea3a42-8523-4d6e-9e70-d65cc2314678",
"x": 2,
"y": 2,
"w": 2,
"h": 2,
"content": "r3c3",
},
{
"id": "60093e2c-d3e2-4146-92b5-97a2fc16c061",
"x": 3,
"y": 1,
"w": 1,
"h": 1,
"content": "r2c4",
},
],
}
]
te_processor = TableEvalProcessor(prediction, ground_truth)
result = te_processor.process_file()
assert result.total_tables == 1
assert result.table_level_acc == 1.0
assert result.element_row_level_index_acc == 1.0
assert result.element_col_level_index_acc == 1.0
assert result.element_row_level_content_acc == 1.0
assert result.element_col_level_content_acc == 1.0
def test_table_eval_processor_when_no_match_with_pred():
prediction = [
{
"type": "Table",
"metadata": {"text_as_html": """<table><tr><td>Some cell</td></tr></table>"""},
}
]
ground_truth = [
{
"type": "Table",
"text": [
{
"id": "ee862c7a-d27e-4484-92de-4faa42a63f3b",
"x": 0,
"y": 0,
"w": 1,
"h": 1,
"content": "11",
},
{
"id": "6237ac7b-bfc8-40d2-92f2-d138277205e2",
"x": 0,
"y": 1,
"w": 1,
"h": 1,
"content": "21",
},
{
"id": "9d0933a9-5984-4cad-80d9-6752bf9bc4df",
"x": 1,
"y": 0,
"w": 1,
"h": 1,
"content": "12",
},
{
"id": "1152d043-5ead-4ab8-8b88-888d48831ac2",
"x": 1,
"y": 1,
"w": 1,
"h": 1,
"content": "22",
},
],
}
]
with mock.patch.object(TableAlignment, "get_table_level_alignment") as align_fn:
align_fn.return_value = [-1]
te_processor = TableEvalProcessor(prediction, ground_truth)
result = te_processor.process_file()
assert result.total_tables == 1
assert result.table_level_acc == 0
assert result.element_row_level_index_acc == 0
assert result.element_col_level_index_acc == 0
assert result.element_row_level_content_acc == 0
assert result.element_col_level_content_acc == 0
def test_table_eval_processor_when_no_tables():
prediction = [{}]
ground_truth = [{}]
te_processor = TableEvalProcessor(prediction, ground_truth)
result = te_processor.process_file()
assert result.total_tables == 0
assert result.table_level_acc == 1
assert np.isnan(result.element_row_level_index_acc)
assert np.isnan(result.element_col_level_index_acc)
assert np.isnan(result.element_row_level_content_acc)
assert np.isnan(result.element_col_level_content_acc)
def test_table_eval_processor_when_only_gt():
prediction = []
ground_truth = [
{
"type": "Table",
"text": [
{
"id": "ee862c7a-d27e-4484-92de-4faa42a63f3b",
"x": 0,
"y": 0,
"w": 1,
"h": 1,
"content": "11",
},
{
"id": "6237ac7b-bfc8-40d2-92f2-d138277205e2",
"x": 0,
"y": 1,
"w": 1,
"h": 1,
"content": "21",
},
{
"id": "9d0933a9-5984-4cad-80d9-6752bf9bc4df",
"x": 1,
"y": 0,
"w": 1,
"h": 1,
"content": "12",
},
{
"id": "1152d043-5ead-4ab8-8b88-888d48831ac2",
"x": 1,
"y": 1,
"w": 1,
"h": 1,
"content": "22",
},
],
}
]
te_processor = TableEvalProcessor(prediction, ground_truth)
result = te_processor.process_file()
assert result.total_tables == 1
assert result.table_level_acc == 0
assert result.element_row_level_index_acc == 0
assert result.element_col_level_index_acc == 0
assert result.element_row_level_content_acc == 0
assert result.element_col_level_content_acc == 0
def test_table_eval_processor_when_only_pred():
prediction = [
{
"type": "Table",
"metadata": {"text_as_html": """<table><tr><td>Some cell</td></tr></table>"""},
}
]
ground_truth = [{}]
te_processor = TableEvalProcessor(prediction, ground_truth)
result = te_processor.process_file()
assert result.total_tables == 0
assert result.table_level_acc == 0
assert result.element_row_level_index_acc == 0
assert result.element_col_level_index_acc == 0
assert result.element_row_level_content_acc == 0
assert result.element_col_level_content_acc == 0