mirror of
				https://github.com/Unstructured-IO/unstructured.git
				synced 2025-10-31 01:54:25 +00:00 
			
		
		
		
	 c35fff2972
			
		
	
	
		c35fff2972
		
			
		
	
	
	
	
		
			
			* add weaviate docker compose * added staging brick and tests for weaviate * initial notebook and requirements file * add commentary to weaviate notebook * weaviate readme * update docs * version and change log * install weaviate client * install weaviate; skip for docker * linting, linting, linting * install weaviate client with deps * comments on weaviate client * fix module not found error for docker container * skipped wrong test in docker * fix typos * add in local-inference
		
			
				
	
	
		
			216 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			216 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| {
 | |
|  "cells": [
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "a3ce962e",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "## Loading Data into Weaviate with `unstructured`\n",
 | |
|     "\n",
 | |
|     "This notebook shows a basic workflow for uploading document elements into Weaviate using the `unstructured` library. To get started with this notebook, first install the dependencies with `pip install -r requirements.txt` and start the Weaviate docker container with `docker-compose up`."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 1,
 | |
|    "id": "5d9ffc17",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "import json\n",
 | |
|     "\n",
 | |
|     "import tqdm\n",
 | |
|     "from unstructured.partition.pdf import partition_pdf\n",
 | |
|     "from unstructured.staging.weaviate import create_unstructured_weaviate_class, stage_for_weaviate\n",
 | |
|     "import weaviate\n",
 | |
|     "from weaviate.util import generate_uuid5"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "673715e9",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "The first step is to partition the document using the `unstructured` library. In the following example, we partition a PDF with `partition_pdf`. You can also partition over a dozen document types with the `partition` function."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 2,
 | |
|    "id": "f9fc0cf9",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "filename = \"../../example-docs/layout-parser-paper-fast.pdf\"\n",
 | |
|     "elements = partition_pdf(filename=filename, strategy=\"fast\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "3ae76364",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Next, we'll create a schema for our Weaviate database using the `create_unstructured_weaviate_class` helper function from the `unstructured` library. The helper function generates a schema that includes all of the elements in the `ElementMetadata` object from `unstructured`. This includes information such as the filename and the page number of the document element. After specifying the schema, we create a connection to the database with the Weaviate client library and create the schema. You can change the name of the class by updating the `unstructured_class_name` variable."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 3,
 | |
|    "id": "91057cb1",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "unstructured_class_name = \"UnstructuredDocument\""
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 4,
 | |
|    "id": "78e804bb",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "unstructured_class = create_unstructured_weaviate_class(unstructured_class_name)\n",
 | |
|     "schema = {\"classes\": [unstructured_class]}                    "
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 5,
 | |
|    "id": "3e317a2d",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "client = weaviate.Client(\"http://localhost:8080\")"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 6,
 | |
|    "id": "0c508784",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "client.schema.create(schema)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "024ae133",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Next, we stage the elements for Weaviate using the `stage_for_weaviate` function and batch upload the results to Weaviate. `stage_for_weaviate` outputs a dictionary that conforms to the schema we created earlier. Once that data is stage, we can use the Weaviate client library to batch upload the results to Weaviate."
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 7,
 | |
|    "id": "a7018bb1",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": [
 | |
|     "data_objects = stage_for_weaviate(elements)"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 8,
 | |
|    "id": "af712d8e",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stderr",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "100%|██████████████████████████████████████████████████████████████████████| 28/28 [00:46<00:00,  1.66s/it]\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "with client.batch(batch_size=10) as batch:\n",
 | |
|     "    for data_object in tqdm.tqdm(data_objects):\n",
 | |
|     "        batch.add_data_object(\n",
 | |
|     "            data_object,\n",
 | |
|     "            unstructured_class_name,\n",
 | |
|     "            uuid=generate_uuid5(data_object),\n",
 | |
|     "        )"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "markdown",
 | |
|    "id": "dac10bf5",
 | |
|    "metadata": {},
 | |
|    "source": [
 | |
|     "Now that the documents are in Weaviate, we're able to run queries against Weaviate!"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": 9,
 | |
|    "id": "14098434",
 | |
|    "metadata": {},
 | |
|    "outputs": [
 | |
|     {
 | |
|      "name": "stdout",
 | |
|      "output_type": "stream",
 | |
|      "text": [
 | |
|       "{\n",
 | |
|       "    \"data\": {\n",
 | |
|       "        \"Get\": {\n",
 | |
|       "            \"UnstructuredDocument\": [\n",
 | |
|       "                {\n",
 | |
|       "                    \"text\": \"Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of document image analysis (DIA) tasks including document image classi\\ufb01cation [11,\"\n",
 | |
|       "                }\n",
 | |
|       "            ]\n",
 | |
|       "        }\n",
 | |
|       "    }\n",
 | |
|       "}\n"
 | |
|      ]
 | |
|     }
 | |
|    ],
 | |
|    "source": [
 | |
|     "near_text = {\"concepts\": [\"document understanding\"]}\n",
 | |
|     "\n",
 | |
|     "result = (\n",
 | |
|     "    client.query\n",
 | |
|     "    .get(\"UnstructuredDocument\", [\"text\"])\n",
 | |
|     "    .with_near_text(near_text)\n",
 | |
|     "    .with_limit(1)\n",
 | |
|     "    .do()\n",
 | |
|     ")\n",
 | |
|     "\n",
 | |
|     "print(json.dumps(result, indent=4))"
 | |
|    ]
 | |
|   },
 | |
|   {
 | |
|    "cell_type": "code",
 | |
|    "execution_count": null,
 | |
|    "id": "c191217c",
 | |
|    "metadata": {},
 | |
|    "outputs": [],
 | |
|    "source": []
 | |
|   }
 | |
|  ],
 | |
|  "metadata": {
 | |
|   "kernelspec": {
 | |
|    "display_name": "Python 3 (ipykernel)",
 | |
|    "language": "python",
 | |
|    "name": "python3"
 | |
|   },
 | |
|   "language_info": {
 | |
|    "codemirror_mode": {
 | |
|     "name": "ipython",
 | |
|     "version": 3
 | |
|    },
 | |
|    "file_extension": ".py",
 | |
|    "mimetype": "text/x-python",
 | |
|    "name": "python",
 | |
|    "nbconvert_exporter": "python",
 | |
|    "pygments_lexer": "ipython3",
 | |
|    "version": "3.8.13"
 | |
|   }
 | |
|  },
 | |
|  "nbformat": 4,
 | |
|  "nbformat_minor": 5
 | |
| }
 |