Christine Straub 1f0c563e0c
refactor: partition_pdf() for ocr_only strategy (#1811)
### Summary
Update `ocr_only` strategy in `partition_pdf()`. This PR adds the
functionality to get accurate coordinate data when partitioning PDFs and
Images with the `ocr_only` strategy.
- Add functionality to perform OCR region grouping based on the OCR text
taken from `pytesseract.image_to_string()`
- Add functionality to get layout elements from OCR regions (ocr_layout)
for both `tesseract` and `paddle`
- Add functionality to determine the `source` of merged text regions
when merging text regions in `merge_text_regions()`
- Merge multiple test functions related to "ocr_only" strategy into
`test_partition_pdf_with_ocr_only_strategy()`
- This PR also fixes [issue
#1792](https://github.com/Unstructured-IO/unstructured/issues/1792)
### Evaluation
```
# Image
PYTHONPATH=. python examples/custom-layout-order/evaluate_natural_reading_order.py example-docs/double-column-A.jpg ocr_only xy-cut image

# PDF
PYTHONPATH=. python examples/custom-layout-order/evaluate_natural_reading_order.py example-docs/multi-column-2p.pdf ocr_only xy-cut pdf
```
### Test
- **Before update**
All elements have the same coordinate data 


![multi-column-2p_1_xy-cut](https://github.com/Unstructured-IO/unstructured/assets/9475974/aae0195a-2943-4fa8-bdd8-807f2f09c768)

- **After update**
All elements have accurate coordinate data


![multi-column-2p_1_xy-cut](https://github.com/Unstructured-IO/unstructured/assets/9475974/0f6c6202-9e65-4acf-bcd4-ac9dd01ab64a)

---------

Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com>
Co-authored-by: christinestraub <christinestraub@users.noreply.github.com>
2023-10-30 20:13:29 +00:00

587 lines
19 KiB
Python

import os
import pathlib
from unittest import mock
import pytest
from PIL import Image
from pytesseract import TesseractError
from unstructured_inference.inference import layout
from test_unstructured.unit_utils import assert_round_trips_through_JSON, example_doc_path
from unstructured.chunking.title import chunk_by_title
from unstructured.partition import image, ocr, pdf
from unstructured.partition.utils.constants import UNSTRUCTURED_INCLUDE_DEBUG_METADATA
from unstructured.utils import only
DIRECTORY = pathlib.Path(__file__).parent.resolve()
class MockResponse:
def __init__(self, status_code, response):
self.status_code = status_code
self.response = response
def json(self):
return self.response
def mock_healthy_get(url, **kwargs):
return MockResponse(status_code=200, response={})
def mock_unhealthy_get(url, **kwargs):
return MockResponse(status_code=500, response={})
def mock_unsuccessful_post(url, **kwargs):
return MockResponse(status_code=500, response={})
def mock_successful_post(url, **kwargs):
response = {
"pages": [
{
"number": 0,
"elements": [
{"type": "Title", "text": "Charlie Brown and the Great Pumpkin"},
],
},
{
"number": 1,
"elements": [{"type": "Title", "text": "A Charlie Brown Christmas"}],
},
],
}
return MockResponse(status_code=200, response=response)
class MockPageLayout(layout.PageLayout):
def __init__(self, number: int, image: Image):
self.number = number
self.image = image
self.elements = [
layout.LayoutElement.from_coords(
type="Title",
x1=0,
y1=0,
x2=2,
y2=2,
text="Charlie Brown and the Great Pumpkin",
),
]
class MockDocumentLayout(layout.DocumentLayout):
@property
def pages(self):
return [
MockPageLayout(number=0, image=Image.new("1", (1, 1))),
]
@pytest.mark.parametrize(
("filename", "file"),
[
("example-docs/example.jpg", None),
(None, b"0000"),
],
)
def test_partition_image_local(monkeypatch, filename, file):
monkeypatch.setattr(
layout,
"process_data_with_model",
lambda *args, **kwargs: MockDocumentLayout(),
)
monkeypatch.setattr(
layout,
"process_file_with_model",
lambda *args, **kwargs: MockDocumentLayout(),
)
monkeypatch.setattr(
ocr,
"process_data_with_ocr",
lambda *args, **kwargs: MockDocumentLayout(),
)
monkeypatch.setattr(
ocr,
"process_data_with_ocr",
lambda *args, **kwargs: MockDocumentLayout(),
)
partition_image_response = pdf._partition_pdf_or_image_local(
filename,
file,
is_image=True,
)
assert partition_image_response[0].text == "Charlie Brown and the Great Pumpkin"
@pytest.mark.skip("Needs to be fixed upstream in unstructured-inference")
def test_partition_image_local_raises_with_no_filename():
with pytest.raises(FileNotFoundError):
pdf._partition_pdf_or_image_local(filename="", file=None, is_image=True)
def test_partition_image_with_auto_strategy(
filename="example-docs/layout-parser-paper-fast.jpg",
):
elements = image.partition_image(filename=filename, strategy="auto")
titles = [el for el in elements if el.category == "Title" and len(el.text.split(" ")) > 10]
title = "LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis"
idx = 3
assert titles[0].text == title
assert elements[idx].metadata.detection_class_prob is not None
assert isinstance(elements[idx].metadata.detection_class_prob, float)
def test_partition_image_with_table_extraction(
filename="example-docs/layout-parser-paper-with-table.jpg",
):
elements = image.partition_image(
filename=filename,
strategy="hi_res",
infer_table_structure=True,
)
table = [el.metadata.text_as_html for el in elements if el.metadata.text_as_html]
assert len(table) == 1
assert "<table><thead><th>" in table[0]
def test_partition_image_with_multipage_tiff(
filename="example-docs/layout-parser-paper-combined.tiff",
):
elements = image.partition_image(filename=filename, strategy="auto")
assert elements[-1].metadata.page_number == 2
def test_partition_image_with_language_passed(filename="example-docs/example.jpg"):
with mock.patch.object(
ocr,
"process_file_with_ocr",
mock.MagicMock(),
) as mock_partition:
image.partition_image(
filename=filename,
strategy="hi_res",
ocr_languages="eng+swe",
)
assert mock_partition.call_args.kwargs.get("ocr_languages") == "eng+swe"
def test_partition_image_from_file_with_language_passed(
filename="example-docs/example.jpg",
):
with mock.patch.object(
ocr,
"process_data_with_ocr",
mock.MagicMock(),
) as mock_partition, open(filename, "rb") as f:
image.partition_image(file=f, strategy="hi_res", ocr_languages="eng+swe")
assert mock_partition.call_args.kwargs.get("ocr_languages") == "eng+swe"
# NOTE(crag): see https://github.com/Unstructured-IO/unstructured/issues/1086
@pytest.mark.skip(reason="Current catching too many tesseract errors")
def test_partition_image_raises_with_invalid_language(
filename="example-docs/example.jpg",
):
with pytest.raises(TesseractError):
image.partition_image(
filename=filename,
strategy="hi_res",
ocr_languages="fakeroo",
)
def test_partition_image_with_ocr_detects_korean():
filename = os.path.join(
DIRECTORY,
"..",
"..",
"..",
"example-docs",
"english-and-korean.png",
)
elements = image.partition_image(
filename=filename,
ocr_languages="eng+kor",
strategy="ocr_only",
)
assert elements[0].text == "RULES AND INSTRUCTIONS"
assert elements[3].text.replace(" ", "").startswith("안녕하세요")
def test_partition_image_with_ocr_detects_korean_from_file():
filename = os.path.join(DIRECTORY, "..", "..", "..", "example-docs", "english-and-korean.png")
with open(filename, "rb") as f:
elements = image.partition_image(
file=f,
ocr_languages="eng+kor",
strategy="ocr_only",
)
assert elements[0].text == "RULES AND INSTRUCTIONS"
assert elements[3].text.replace(" ", "").startswith("안녕하세요")
def test_partition_image_raises_with_bad_strategy():
filename = os.path.join(
DIRECTORY,
"..",
"..",
"..",
"example-docs",
"english-and-korean.png",
)
with pytest.raises(ValueError):
image.partition_image(filename=filename, strategy="fakeroo")
def test_partition_image_default_strategy_hi_res():
filename = os.path.join(
DIRECTORY,
"..",
"..",
"..",
"example-docs",
"layout-parser-paper-fast.jpg",
)
with open(filename, "rb") as f:
elements = image.partition_image(file=f)
title = "LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis"
idx = 3
assert elements[idx].text == title
assert elements[idx].metadata.coordinates is not None
assert elements[idx].metadata.detection_class_prob is not None
assert isinstance(elements[idx].metadata.detection_class_prob, float)
if UNSTRUCTURED_INCLUDE_DEBUG_METADATA:
# A bug in partition_groups_from_regions in unstructured-inference losses some sources
assert {element.metadata.detection_origin for element in elements} == {
"yolox",
"ocr_tesseract",
}
def test_partition_image_metadata_date(
mocker,
filename="example-docs/english-and-korean.png",
):
mocked_last_modification_date = "2029-07-05T09:24:28"
mocker.patch(
"unstructured.partition.pdf.get_last_modified_date",
return_value=mocked_last_modification_date,
)
elements = image.partition_image(filename=filename)
assert elements[0].metadata.last_modified == mocked_last_modification_date
def test_partition_image_with_hi_res_strategy_metadata_date(
mocker,
filename="example-docs/english-and-korean.png",
):
mocked_last_modification_date = "2029-07-05T09:24:28"
mocker.patch(
"unstructured.partition.pdf.get_last_modified_date",
return_value=mocked_last_modification_date,
)
elements = image.partition_image(filename=filename, stratefy="hi_res")
assert elements[0].metadata.last_modified == mocked_last_modification_date
def test_partition_image_metadata_date_custom_metadata_date(
mocker,
filename="example-docs/english-and-korean.png",
):
mocked_last_modification_date = "2029-07-05T09:24:28"
expected_last_modification_date = "2009-07-05T09:24:28"
mocker.patch(
"unstructured.partition.pdf.get_last_modified_date",
return_value=mocked_last_modification_date,
)
elements = image.partition_image(
filename=filename,
metadata_last_modified=expected_last_modification_date,
)
assert elements[0].metadata.last_modified == expected_last_modification_date
def test_partition_image_with_hi_res_strategy_metadata_date_custom_metadata_date(
mocker,
filename="example-docs/english-and-korean.png",
):
mocked_last_modification_date = "2029-07-05T09:24:28"
expected_last_modification_date = "2009-07-05T09:24:28"
mocker.patch(
"unstructured.partition.pdf.get_last_modified_date",
return_value=mocked_last_modification_date,
)
elements = image.partition_image(
filename=filename,
stratefy="hi_res",
metadata_last_modified=expected_last_modification_date,
)
assert elements[0].metadata.last_modified == expected_last_modification_date
def test_partition_image_from_file_metadata_date(
mocker,
filename="example-docs/english-and-korean.png",
):
mocked_last_modification_date = "2029-07-05T09:24:28"
mocker.patch(
"unstructured.partition.pdf.get_last_modified_date_from_file",
return_value=mocked_last_modification_date,
)
with open(filename, "rb") as f:
elements = image.partition_image(file=f)
assert elements[0].metadata.last_modified == mocked_last_modification_date
def test_partition_image_from_file_with_hi_res_strategy_metadata_date(
mocker,
filename="example-docs/english-and-korean.png",
):
mocked_last_modification_date = "2029-07-05T09:24:28"
mocker.patch(
"unstructured.partition.pdf.get_last_modified_date_from_file",
return_value=mocked_last_modification_date,
)
with open(filename, "rb") as f:
elements = image.partition_image(file=f, stratefy="hi_res")
assert elements[0].metadata.last_modified == mocked_last_modification_date
def test_partition_image_from_file_metadata_date_custom_metadata_date(
mocker,
filename="example-docs/english-and-korean.png",
):
mocked_last_modification_date = "2029-07-05T09:24:28"
expected_last_modification_date = "2009-07-05T09:24:28"
mocker.patch(
"unstructured.partition.pdf.get_last_modified_date_from_file",
return_value=mocked_last_modification_date,
)
with open(filename, "rb") as f:
elements = image.partition_image(
file=f,
metadata_last_modified=expected_last_modification_date,
)
assert elements[0].metadata.last_modified == expected_last_modification_date
def test_partition_image_from_file_with_hi_res_strategy_metadata_date_custom_metadata_date(
mocker,
filename="example-docs/english-and-korean.png",
):
mocked_last_modification_date = "2029-07-05T09:24:28"
expected_last_modification_date = "2009-07-05T09:24:28"
mocker.patch(
"unstructured.partition.pdf.get_last_modified_date_from_file",
return_value=mocked_last_modification_date,
)
with open(filename, "rb") as f:
elements = image.partition_image(
file=f,
metadata_last_modified=expected_last_modification_date,
stratefy="hi_res",
)
assert elements[0].metadata.last_modified == expected_last_modification_date
def test_partition_msg_with_json():
elements = image.partition_image(
example_doc_path("layout-parser-paper-fast.jpg"),
strategy="auto",
)
assert_round_trips_through_JSON(elements)
def test_partition_image_with_ocr_has_coordinates_from_filename(
filename="example-docs/english-and-korean.png",
):
elements = image.partition_image(filename=filename, strategy="ocr_only")
int_coordinates = [(int(x), int(y)) for x, y in elements[0].metadata.coordinates.points]
assert int_coordinates == [(14, 16), (14, 37), (381, 37), (381, 16)]
@pytest.mark.parametrize(
("filename"),
[
("example-docs/layout-parser-paper-with-table.jpg"),
("example-docs/english-and-korean.png"),
("example-docs/layout-parser-paper-fast.jpg"),
],
)
def test_partition_image_with_ocr_coordinates_are_not_nan_from_filename(
filename,
):
import math
elements = image.partition_image(filename=filename, strategy="ocr_only")
for element in elements:
# TODO (jennings) One or multiple elements is an empty string
# without coordinates. This should be fixed in a new issue
if element.text:
box = element.metadata.coordinates.points
for point in box:
assert point[0] is not math.nan
assert point[1] is not math.nan
def test_partition_image_formats_languages_for_tesseract():
filename = "example-docs/jpn-vert.jpeg"
with mock.patch(
"unstructured.partition.ocr.process_file_with_ocr",
) as mock_process_file_with_ocr:
image.partition_image(filename=filename, strategy="hi_res", languages=["jpn_vert"])
_, kwargs = mock_process_file_with_ocr.call_args_list[0]
assert "ocr_languages" in kwargs
assert kwargs["ocr_languages"] == "jpn_vert"
def test_partition_image_warns_with_ocr_languages(caplog):
filename = "example-docs/layout-parser-paper-fast.jpg"
image.partition_image(filename=filename, strategy="hi_res", ocr_languages="eng")
assert "The ocr_languages kwarg will be deprecated" in caplog.text
def test_add_chunking_strategy_on_partition_image(
filename="example-docs/layout-parser-paper-fast.jpg",
):
elements = image.partition_image(filename=filename)
chunk_elements = image.partition_image(filename, chunking_strategy="by_title")
chunks = chunk_by_title(elements)
assert chunk_elements != elements
assert chunk_elements == chunks
def test_add_chunking_strategy_on_partition_image_hi_res(
filename="example-docs/layout-parser-paper-with-table.jpg",
):
elements = image.partition_image(
filename=filename,
strategy="hi_res",
infer_table_structure=True,
)
chunk_elements = image.partition_image(
filename,
strategy="hi_res",
infer_table_structure=True,
chunking_strategy="by_title",
)
chunks = chunk_by_title(elements)
assert chunk_elements != elements
assert chunk_elements == chunks
def test_partition_image_uses_model_name():
with mock.patch.object(
pdf,
"_partition_pdf_or_image_local",
) as mockpartition:
image.partition_image("example-docs/layout-parser-paper-fast.jpg", model_name="test")
print(mockpartition.call_args)
assert "model_name" in mockpartition.call_args.kwargs
assert mockpartition.call_args.kwargs["model_name"]
@pytest.mark.parametrize(
("ocr_mode", "idx_title_element"),
[
("entire_page", 3),
("individual_blocks", 1),
],
)
def test_partition_image_hi_res_ocr_mode(ocr_mode, idx_title_element):
filename = "example-docs/layout-parser-paper-fast.jpg"
elements = image.partition_image(filename=filename, ocr_mode=ocr_mode, strategy="hi_res")
first_line = "LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis"
# Note(yuming): idx_title_element is different based on xy-cut and ocr mode
assert elements[idx_title_element].text == first_line
def test_partition_image_hi_res_invalid_ocr_mode():
filename = "example-docs/layout-parser-paper-fast.jpg"
with pytest.raises(ValueError):
_ = image.partition_image(filename=filename, ocr_mode="invalid_ocr_mode", strategy="hi_res")
@pytest.mark.parametrize(
("ocr_mode"),
[
("entire_page"),
("individual_blocks"),
],
)
def test_partition_image_hi_res_ocr_mode_with_table_extraction(ocr_mode):
filename = "example-docs/layout-parser-paper-with-table.jpg"
elements = image.partition_image(
filename=filename,
ocr_mode=ocr_mode,
strategy="hi_res",
infer_table_structure=True,
)
table = [el.metadata.text_as_html for el in elements if el.metadata.text_as_html]
assert len(table) == 1
assert "<table><thead><th>" in table[0]
assert "Layouts of history Japanese documents" in table[0]
assert "Layouts of scanned modern magazines and scientific reports" in table[0]
def test_partition_image_raises_TypeError_for_invalid_languages():
filename = "example-docs/layout-parser-paper-fast.jpg"
with pytest.raises(TypeError):
image.partition_image(filename=filename, strategy="hi_res", languages="eng")
@pytest.fixture()
def inference_results():
page = layout.PageLayout(
number=1,
image=mock.MagicMock(format="JPEG"),
layout=layout.TextRegion.from_coords(0, 0, 600, 800, text="hello"),
)
page.elements = [layout.LayoutElement.from_coords(0, 0, 600, 800, text="hello")]
doc = layout.DocumentLayout(pages=[page])
return doc
def test_partition_image_has_filename(inference_results):
doc_path = "example-docs"
filename = "layout-parser-paper-fast.jpg"
# Mock inference call with known return results
with mock.patch(
"unstructured_inference.inference.layout.process_file_with_model",
return_value=inference_results,
) as mock_inference_func:
elements = image.partition_image(
filename=os.path.join(doc_path, filename),
strategy="hi_res",
)
# Make sure we actually went down the path we expect.
mock_inference_func.assert_called_once()
# Unpack element but also make sure there is only one
element = only(elements)
# This makes sure we are still getting the filetype metadata (should be translated from the
# fixtures)
assert element.metadata.filetype == "JPEG"
# This should be kept from the filename we originally gave
assert element.metadata.filename == filename