mirror of
https://github.com/Unstructured-IO/unstructured.git
synced 2025-07-18 22:46:44 +00:00

### Summary Update `ocr_only` strategy in `partition_pdf()`. This PR adds the functionality to get accurate coordinate data when partitioning PDFs and Images with the `ocr_only` strategy. - Add functionality to perform OCR region grouping based on the OCR text taken from `pytesseract.image_to_string()` - Add functionality to get layout elements from OCR regions (ocr_layout) for both `tesseract` and `paddle` - Add functionality to determine the `source` of merged text regions when merging text regions in `merge_text_regions()` - Merge multiple test functions related to "ocr_only" strategy into `test_partition_pdf_with_ocr_only_strategy()` - This PR also fixes [issue #1792](https://github.com/Unstructured-IO/unstructured/issues/1792) ### Evaluation ``` # Image PYTHONPATH=. python examples/custom-layout-order/evaluate_natural_reading_order.py example-docs/double-column-A.jpg ocr_only xy-cut image # PDF PYTHONPATH=. python examples/custom-layout-order/evaluate_natural_reading_order.py example-docs/multi-column-2p.pdf ocr_only xy-cut pdf ``` ### Test - **Before update** All elements have the same coordinate data  - **After update** All elements have accurate coordinate data  --------- Co-authored-by: ryannikolaidis <1208590+ryannikolaidis@users.noreply.github.com> Co-authored-by: christinestraub <christinestraub@users.noreply.github.com>
587 lines
19 KiB
Python
587 lines
19 KiB
Python
import os
|
|
import pathlib
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
from PIL import Image
|
|
from pytesseract import TesseractError
|
|
from unstructured_inference.inference import layout
|
|
|
|
from test_unstructured.unit_utils import assert_round_trips_through_JSON, example_doc_path
|
|
from unstructured.chunking.title import chunk_by_title
|
|
from unstructured.partition import image, ocr, pdf
|
|
from unstructured.partition.utils.constants import UNSTRUCTURED_INCLUDE_DEBUG_METADATA
|
|
from unstructured.utils import only
|
|
|
|
DIRECTORY = pathlib.Path(__file__).parent.resolve()
|
|
|
|
|
|
class MockResponse:
|
|
def __init__(self, status_code, response):
|
|
self.status_code = status_code
|
|
self.response = response
|
|
|
|
def json(self):
|
|
return self.response
|
|
|
|
|
|
def mock_healthy_get(url, **kwargs):
|
|
return MockResponse(status_code=200, response={})
|
|
|
|
|
|
def mock_unhealthy_get(url, **kwargs):
|
|
return MockResponse(status_code=500, response={})
|
|
|
|
|
|
def mock_unsuccessful_post(url, **kwargs):
|
|
return MockResponse(status_code=500, response={})
|
|
|
|
|
|
def mock_successful_post(url, **kwargs):
|
|
response = {
|
|
"pages": [
|
|
{
|
|
"number": 0,
|
|
"elements": [
|
|
{"type": "Title", "text": "Charlie Brown and the Great Pumpkin"},
|
|
],
|
|
},
|
|
{
|
|
"number": 1,
|
|
"elements": [{"type": "Title", "text": "A Charlie Brown Christmas"}],
|
|
},
|
|
],
|
|
}
|
|
return MockResponse(status_code=200, response=response)
|
|
|
|
|
|
class MockPageLayout(layout.PageLayout):
|
|
def __init__(self, number: int, image: Image):
|
|
self.number = number
|
|
self.image = image
|
|
self.elements = [
|
|
layout.LayoutElement.from_coords(
|
|
type="Title",
|
|
x1=0,
|
|
y1=0,
|
|
x2=2,
|
|
y2=2,
|
|
text="Charlie Brown and the Great Pumpkin",
|
|
),
|
|
]
|
|
|
|
|
|
class MockDocumentLayout(layout.DocumentLayout):
|
|
@property
|
|
def pages(self):
|
|
return [
|
|
MockPageLayout(number=0, image=Image.new("1", (1, 1))),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("filename", "file"),
|
|
[
|
|
("example-docs/example.jpg", None),
|
|
(None, b"0000"),
|
|
],
|
|
)
|
|
def test_partition_image_local(monkeypatch, filename, file):
|
|
monkeypatch.setattr(
|
|
layout,
|
|
"process_data_with_model",
|
|
lambda *args, **kwargs: MockDocumentLayout(),
|
|
)
|
|
monkeypatch.setattr(
|
|
layout,
|
|
"process_file_with_model",
|
|
lambda *args, **kwargs: MockDocumentLayout(),
|
|
)
|
|
monkeypatch.setattr(
|
|
ocr,
|
|
"process_data_with_ocr",
|
|
lambda *args, **kwargs: MockDocumentLayout(),
|
|
)
|
|
monkeypatch.setattr(
|
|
ocr,
|
|
"process_data_with_ocr",
|
|
lambda *args, **kwargs: MockDocumentLayout(),
|
|
)
|
|
|
|
partition_image_response = pdf._partition_pdf_or_image_local(
|
|
filename,
|
|
file,
|
|
is_image=True,
|
|
)
|
|
assert partition_image_response[0].text == "Charlie Brown and the Great Pumpkin"
|
|
|
|
|
|
@pytest.mark.skip("Needs to be fixed upstream in unstructured-inference")
|
|
def test_partition_image_local_raises_with_no_filename():
|
|
with pytest.raises(FileNotFoundError):
|
|
pdf._partition_pdf_or_image_local(filename="", file=None, is_image=True)
|
|
|
|
|
|
def test_partition_image_with_auto_strategy(
|
|
filename="example-docs/layout-parser-paper-fast.jpg",
|
|
):
|
|
elements = image.partition_image(filename=filename, strategy="auto")
|
|
titles = [el for el in elements if el.category == "Title" and len(el.text.split(" ")) > 10]
|
|
title = "LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis"
|
|
idx = 3
|
|
assert titles[0].text == title
|
|
assert elements[idx].metadata.detection_class_prob is not None
|
|
assert isinstance(elements[idx].metadata.detection_class_prob, float)
|
|
|
|
|
|
def test_partition_image_with_table_extraction(
|
|
filename="example-docs/layout-parser-paper-with-table.jpg",
|
|
):
|
|
elements = image.partition_image(
|
|
filename=filename,
|
|
strategy="hi_res",
|
|
infer_table_structure=True,
|
|
)
|
|
table = [el.metadata.text_as_html for el in elements if el.metadata.text_as_html]
|
|
assert len(table) == 1
|
|
assert "<table><thead><th>" in table[0]
|
|
|
|
|
|
def test_partition_image_with_multipage_tiff(
|
|
filename="example-docs/layout-parser-paper-combined.tiff",
|
|
):
|
|
elements = image.partition_image(filename=filename, strategy="auto")
|
|
assert elements[-1].metadata.page_number == 2
|
|
|
|
|
|
def test_partition_image_with_language_passed(filename="example-docs/example.jpg"):
|
|
with mock.patch.object(
|
|
ocr,
|
|
"process_file_with_ocr",
|
|
mock.MagicMock(),
|
|
) as mock_partition:
|
|
image.partition_image(
|
|
filename=filename,
|
|
strategy="hi_res",
|
|
ocr_languages="eng+swe",
|
|
)
|
|
|
|
assert mock_partition.call_args.kwargs.get("ocr_languages") == "eng+swe"
|
|
|
|
|
|
def test_partition_image_from_file_with_language_passed(
|
|
filename="example-docs/example.jpg",
|
|
):
|
|
with mock.patch.object(
|
|
ocr,
|
|
"process_data_with_ocr",
|
|
mock.MagicMock(),
|
|
) as mock_partition, open(filename, "rb") as f:
|
|
image.partition_image(file=f, strategy="hi_res", ocr_languages="eng+swe")
|
|
|
|
assert mock_partition.call_args.kwargs.get("ocr_languages") == "eng+swe"
|
|
|
|
|
|
# NOTE(crag): see https://github.com/Unstructured-IO/unstructured/issues/1086
|
|
@pytest.mark.skip(reason="Current catching too many tesseract errors")
|
|
def test_partition_image_raises_with_invalid_language(
|
|
filename="example-docs/example.jpg",
|
|
):
|
|
with pytest.raises(TesseractError):
|
|
image.partition_image(
|
|
filename=filename,
|
|
strategy="hi_res",
|
|
ocr_languages="fakeroo",
|
|
)
|
|
|
|
|
|
def test_partition_image_with_ocr_detects_korean():
|
|
filename = os.path.join(
|
|
DIRECTORY,
|
|
"..",
|
|
"..",
|
|
"..",
|
|
"example-docs",
|
|
"english-and-korean.png",
|
|
)
|
|
elements = image.partition_image(
|
|
filename=filename,
|
|
ocr_languages="eng+kor",
|
|
strategy="ocr_only",
|
|
)
|
|
|
|
assert elements[0].text == "RULES AND INSTRUCTIONS"
|
|
assert elements[3].text.replace(" ", "").startswith("안녕하세요")
|
|
|
|
|
|
def test_partition_image_with_ocr_detects_korean_from_file():
|
|
filename = os.path.join(DIRECTORY, "..", "..", "..", "example-docs", "english-and-korean.png")
|
|
with open(filename, "rb") as f:
|
|
elements = image.partition_image(
|
|
file=f,
|
|
ocr_languages="eng+kor",
|
|
strategy="ocr_only",
|
|
)
|
|
|
|
assert elements[0].text == "RULES AND INSTRUCTIONS"
|
|
assert elements[3].text.replace(" ", "").startswith("안녕하세요")
|
|
|
|
|
|
def test_partition_image_raises_with_bad_strategy():
|
|
filename = os.path.join(
|
|
DIRECTORY,
|
|
"..",
|
|
"..",
|
|
"..",
|
|
"example-docs",
|
|
"english-and-korean.png",
|
|
)
|
|
with pytest.raises(ValueError):
|
|
image.partition_image(filename=filename, strategy="fakeroo")
|
|
|
|
|
|
def test_partition_image_default_strategy_hi_res():
|
|
filename = os.path.join(
|
|
DIRECTORY,
|
|
"..",
|
|
"..",
|
|
"..",
|
|
"example-docs",
|
|
"layout-parser-paper-fast.jpg",
|
|
)
|
|
with open(filename, "rb") as f:
|
|
elements = image.partition_image(file=f)
|
|
|
|
title = "LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis"
|
|
idx = 3
|
|
assert elements[idx].text == title
|
|
assert elements[idx].metadata.coordinates is not None
|
|
assert elements[idx].metadata.detection_class_prob is not None
|
|
assert isinstance(elements[idx].metadata.detection_class_prob, float)
|
|
if UNSTRUCTURED_INCLUDE_DEBUG_METADATA:
|
|
# A bug in partition_groups_from_regions in unstructured-inference losses some sources
|
|
assert {element.metadata.detection_origin for element in elements} == {
|
|
"yolox",
|
|
"ocr_tesseract",
|
|
}
|
|
|
|
|
|
def test_partition_image_metadata_date(
|
|
mocker,
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
mocked_last_modification_date = "2029-07-05T09:24:28"
|
|
mocker.patch(
|
|
"unstructured.partition.pdf.get_last_modified_date",
|
|
return_value=mocked_last_modification_date,
|
|
)
|
|
elements = image.partition_image(filename=filename)
|
|
|
|
assert elements[0].metadata.last_modified == mocked_last_modification_date
|
|
|
|
|
|
def test_partition_image_with_hi_res_strategy_metadata_date(
|
|
mocker,
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
mocked_last_modification_date = "2029-07-05T09:24:28"
|
|
mocker.patch(
|
|
"unstructured.partition.pdf.get_last_modified_date",
|
|
return_value=mocked_last_modification_date,
|
|
)
|
|
elements = image.partition_image(filename=filename, stratefy="hi_res")
|
|
|
|
assert elements[0].metadata.last_modified == mocked_last_modification_date
|
|
|
|
|
|
def test_partition_image_metadata_date_custom_metadata_date(
|
|
mocker,
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
mocked_last_modification_date = "2029-07-05T09:24:28"
|
|
expected_last_modification_date = "2009-07-05T09:24:28"
|
|
|
|
mocker.patch(
|
|
"unstructured.partition.pdf.get_last_modified_date",
|
|
return_value=mocked_last_modification_date,
|
|
)
|
|
elements = image.partition_image(
|
|
filename=filename,
|
|
metadata_last_modified=expected_last_modification_date,
|
|
)
|
|
|
|
assert elements[0].metadata.last_modified == expected_last_modification_date
|
|
|
|
|
|
def test_partition_image_with_hi_res_strategy_metadata_date_custom_metadata_date(
|
|
mocker,
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
mocked_last_modification_date = "2029-07-05T09:24:28"
|
|
expected_last_modification_date = "2009-07-05T09:24:28"
|
|
|
|
mocker.patch(
|
|
"unstructured.partition.pdf.get_last_modified_date",
|
|
return_value=mocked_last_modification_date,
|
|
)
|
|
elements = image.partition_image(
|
|
filename=filename,
|
|
stratefy="hi_res",
|
|
metadata_last_modified=expected_last_modification_date,
|
|
)
|
|
|
|
assert elements[0].metadata.last_modified == expected_last_modification_date
|
|
|
|
|
|
def test_partition_image_from_file_metadata_date(
|
|
mocker,
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
mocked_last_modification_date = "2029-07-05T09:24:28"
|
|
mocker.patch(
|
|
"unstructured.partition.pdf.get_last_modified_date_from_file",
|
|
return_value=mocked_last_modification_date,
|
|
)
|
|
with open(filename, "rb") as f:
|
|
elements = image.partition_image(file=f)
|
|
|
|
assert elements[0].metadata.last_modified == mocked_last_modification_date
|
|
|
|
|
|
def test_partition_image_from_file_with_hi_res_strategy_metadata_date(
|
|
mocker,
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
mocked_last_modification_date = "2029-07-05T09:24:28"
|
|
mocker.patch(
|
|
"unstructured.partition.pdf.get_last_modified_date_from_file",
|
|
return_value=mocked_last_modification_date,
|
|
)
|
|
|
|
with open(filename, "rb") as f:
|
|
elements = image.partition_image(file=f, stratefy="hi_res")
|
|
|
|
assert elements[0].metadata.last_modified == mocked_last_modification_date
|
|
|
|
|
|
def test_partition_image_from_file_metadata_date_custom_metadata_date(
|
|
mocker,
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
mocked_last_modification_date = "2029-07-05T09:24:28"
|
|
expected_last_modification_date = "2009-07-05T09:24:28"
|
|
|
|
mocker.patch(
|
|
"unstructured.partition.pdf.get_last_modified_date_from_file",
|
|
return_value=mocked_last_modification_date,
|
|
)
|
|
with open(filename, "rb") as f:
|
|
elements = image.partition_image(
|
|
file=f,
|
|
metadata_last_modified=expected_last_modification_date,
|
|
)
|
|
|
|
assert elements[0].metadata.last_modified == expected_last_modification_date
|
|
|
|
|
|
def test_partition_image_from_file_with_hi_res_strategy_metadata_date_custom_metadata_date(
|
|
mocker,
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
mocked_last_modification_date = "2029-07-05T09:24:28"
|
|
expected_last_modification_date = "2009-07-05T09:24:28"
|
|
|
|
mocker.patch(
|
|
"unstructured.partition.pdf.get_last_modified_date_from_file",
|
|
return_value=mocked_last_modification_date,
|
|
)
|
|
with open(filename, "rb") as f:
|
|
elements = image.partition_image(
|
|
file=f,
|
|
metadata_last_modified=expected_last_modification_date,
|
|
stratefy="hi_res",
|
|
)
|
|
|
|
assert elements[0].metadata.last_modified == expected_last_modification_date
|
|
|
|
|
|
def test_partition_msg_with_json():
|
|
elements = image.partition_image(
|
|
example_doc_path("layout-parser-paper-fast.jpg"),
|
|
strategy="auto",
|
|
)
|
|
assert_round_trips_through_JSON(elements)
|
|
|
|
|
|
def test_partition_image_with_ocr_has_coordinates_from_filename(
|
|
filename="example-docs/english-and-korean.png",
|
|
):
|
|
elements = image.partition_image(filename=filename, strategy="ocr_only")
|
|
int_coordinates = [(int(x), int(y)) for x, y in elements[0].metadata.coordinates.points]
|
|
assert int_coordinates == [(14, 16), (14, 37), (381, 37), (381, 16)]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("filename"),
|
|
[
|
|
("example-docs/layout-parser-paper-with-table.jpg"),
|
|
("example-docs/english-and-korean.png"),
|
|
("example-docs/layout-parser-paper-fast.jpg"),
|
|
],
|
|
)
|
|
def test_partition_image_with_ocr_coordinates_are_not_nan_from_filename(
|
|
filename,
|
|
):
|
|
import math
|
|
|
|
elements = image.partition_image(filename=filename, strategy="ocr_only")
|
|
for element in elements:
|
|
# TODO (jennings) One or multiple elements is an empty string
|
|
# without coordinates. This should be fixed in a new issue
|
|
if element.text:
|
|
box = element.metadata.coordinates.points
|
|
for point in box:
|
|
assert point[0] is not math.nan
|
|
assert point[1] is not math.nan
|
|
|
|
|
|
def test_partition_image_formats_languages_for_tesseract():
|
|
filename = "example-docs/jpn-vert.jpeg"
|
|
with mock.patch(
|
|
"unstructured.partition.ocr.process_file_with_ocr",
|
|
) as mock_process_file_with_ocr:
|
|
image.partition_image(filename=filename, strategy="hi_res", languages=["jpn_vert"])
|
|
_, kwargs = mock_process_file_with_ocr.call_args_list[0]
|
|
assert "ocr_languages" in kwargs
|
|
assert kwargs["ocr_languages"] == "jpn_vert"
|
|
|
|
|
|
def test_partition_image_warns_with_ocr_languages(caplog):
|
|
filename = "example-docs/layout-parser-paper-fast.jpg"
|
|
image.partition_image(filename=filename, strategy="hi_res", ocr_languages="eng")
|
|
assert "The ocr_languages kwarg will be deprecated" in caplog.text
|
|
|
|
|
|
def test_add_chunking_strategy_on_partition_image(
|
|
filename="example-docs/layout-parser-paper-fast.jpg",
|
|
):
|
|
elements = image.partition_image(filename=filename)
|
|
chunk_elements = image.partition_image(filename, chunking_strategy="by_title")
|
|
chunks = chunk_by_title(elements)
|
|
assert chunk_elements != elements
|
|
assert chunk_elements == chunks
|
|
|
|
|
|
def test_add_chunking_strategy_on_partition_image_hi_res(
|
|
filename="example-docs/layout-parser-paper-with-table.jpg",
|
|
):
|
|
elements = image.partition_image(
|
|
filename=filename,
|
|
strategy="hi_res",
|
|
infer_table_structure=True,
|
|
)
|
|
chunk_elements = image.partition_image(
|
|
filename,
|
|
strategy="hi_res",
|
|
infer_table_structure=True,
|
|
chunking_strategy="by_title",
|
|
)
|
|
chunks = chunk_by_title(elements)
|
|
assert chunk_elements != elements
|
|
assert chunk_elements == chunks
|
|
|
|
|
|
def test_partition_image_uses_model_name():
|
|
with mock.patch.object(
|
|
pdf,
|
|
"_partition_pdf_or_image_local",
|
|
) as mockpartition:
|
|
image.partition_image("example-docs/layout-parser-paper-fast.jpg", model_name="test")
|
|
print(mockpartition.call_args)
|
|
assert "model_name" in mockpartition.call_args.kwargs
|
|
assert mockpartition.call_args.kwargs["model_name"]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("ocr_mode", "idx_title_element"),
|
|
[
|
|
("entire_page", 3),
|
|
("individual_blocks", 1),
|
|
],
|
|
)
|
|
def test_partition_image_hi_res_ocr_mode(ocr_mode, idx_title_element):
|
|
filename = "example-docs/layout-parser-paper-fast.jpg"
|
|
elements = image.partition_image(filename=filename, ocr_mode=ocr_mode, strategy="hi_res")
|
|
first_line = "LayoutParser: A Unified Toolkit for Deep Learning Based Document Image Analysis"
|
|
# Note(yuming): idx_title_element is different based on xy-cut and ocr mode
|
|
assert elements[idx_title_element].text == first_line
|
|
|
|
|
|
def test_partition_image_hi_res_invalid_ocr_mode():
|
|
filename = "example-docs/layout-parser-paper-fast.jpg"
|
|
with pytest.raises(ValueError):
|
|
_ = image.partition_image(filename=filename, ocr_mode="invalid_ocr_mode", strategy="hi_res")
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
("ocr_mode"),
|
|
[
|
|
("entire_page"),
|
|
("individual_blocks"),
|
|
],
|
|
)
|
|
def test_partition_image_hi_res_ocr_mode_with_table_extraction(ocr_mode):
|
|
filename = "example-docs/layout-parser-paper-with-table.jpg"
|
|
elements = image.partition_image(
|
|
filename=filename,
|
|
ocr_mode=ocr_mode,
|
|
strategy="hi_res",
|
|
infer_table_structure=True,
|
|
)
|
|
table = [el.metadata.text_as_html for el in elements if el.metadata.text_as_html]
|
|
assert len(table) == 1
|
|
assert "<table><thead><th>" in table[0]
|
|
assert "Layouts of history Japanese documents" in table[0]
|
|
assert "Layouts of scanned modern magazines and scientific reports" in table[0]
|
|
|
|
|
|
def test_partition_image_raises_TypeError_for_invalid_languages():
|
|
filename = "example-docs/layout-parser-paper-fast.jpg"
|
|
with pytest.raises(TypeError):
|
|
image.partition_image(filename=filename, strategy="hi_res", languages="eng")
|
|
|
|
|
|
@pytest.fixture()
|
|
def inference_results():
|
|
page = layout.PageLayout(
|
|
number=1,
|
|
image=mock.MagicMock(format="JPEG"),
|
|
layout=layout.TextRegion.from_coords(0, 0, 600, 800, text="hello"),
|
|
)
|
|
page.elements = [layout.LayoutElement.from_coords(0, 0, 600, 800, text="hello")]
|
|
doc = layout.DocumentLayout(pages=[page])
|
|
return doc
|
|
|
|
|
|
def test_partition_image_has_filename(inference_results):
|
|
doc_path = "example-docs"
|
|
filename = "layout-parser-paper-fast.jpg"
|
|
# Mock inference call with known return results
|
|
with mock.patch(
|
|
"unstructured_inference.inference.layout.process_file_with_model",
|
|
return_value=inference_results,
|
|
) as mock_inference_func:
|
|
elements = image.partition_image(
|
|
filename=os.path.join(doc_path, filename),
|
|
strategy="hi_res",
|
|
)
|
|
# Make sure we actually went down the path we expect.
|
|
mock_inference_func.assert_called_once()
|
|
# Unpack element but also make sure there is only one
|
|
element = only(elements)
|
|
# This makes sure we are still getting the filetype metadata (should be translated from the
|
|
# fixtures)
|
|
assert element.metadata.filetype == "JPEG"
|
|
# This should be kept from the filename we originally gave
|
|
assert element.metadata.filename == filename
|