mirror of
https://github.com/Unstructured-IO/unstructured.git
synced 2025-07-13 12:05:54 +00:00
274 lines
7.6 KiB
Plaintext
274 lines
7.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "a3ce962e",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Loading Data into Weaviate with `unstructured`\n",
|
|
"\n",
|
|
"This notebook shows a basic workflow for uploading document elements into Weaviate using the `unstructured` library. To get started with this notebook, first install the dependencies with `pip install -r requirements.txt` and start the Weaviate docker container with `docker-compose up`."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"id": "5d9ffc17",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:54:56.713106Z",
|
|
"start_time": "2023-08-09T22:54:55.721284Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"import json\n",
|
|
"\n",
|
|
"import tqdm\n",
|
|
"from unstructured.partition.pdf import partition_pdf\n",
|
|
"from unstructured.staging.weaviate import create_unstructured_weaviate_class, stage_for_weaviate\n",
|
|
"import weaviate\n",
|
|
"from weaviate.util import generate_uuid5"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "673715e9",
|
|
"metadata": {},
|
|
"source": [
|
|
"The first step is to partition the document using the `unstructured` library. In the following example, we partition a PDF with `partition_pdf`. You can also partition over a dozen document types with the `partition` function."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f9fc0cf9",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:54:58.584857Z",
|
|
"start_time": "2023-08-09T22:54:58.300351Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"filename = \"../../example-docs/layout-parser-paper-fast.pdf\"\n",
|
|
"elements = partition_pdf(filename=filename, strategy=\"fast\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "3ae76364",
|
|
"metadata": {},
|
|
"source": [
|
|
"Next, we'll create a schema for our Weaviate database using the `create_unstructured_weaviate_class` helper function from the `unstructured` library. The helper function generates a schema that includes all of the elements in the `ElementMetadata` object from `unstructured`. This includes information such as the filename and the page number of the document element. After specifying the schema, we create a connection to the database with the Weaviate client library and create the schema. You can change the name of the class by updating the `unstructured_class_name` variable."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"id": "91057cb1",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:54:59.298547Z",
|
|
"start_time": "2023-08-09T22:54:59.296005Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"unstructured_class_name = \"UnstructuredDocument\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "78e804bb",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:54:59.727082Z",
|
|
"start_time": "2023-08-09T22:54:59.722593Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"unstructured_class = create_unstructured_weaviate_class(unstructured_class_name)\n",
|
|
"schema = {\"classes\": [unstructured_class]} "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "3e317a2d",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:55:01.606118Z",
|
|
"start_time": "2023-08-09T22:55:00.684623Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"client = weaviate.Client(\"http://localhost:8080\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "0c508784",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:55:17.579418Z",
|
|
"start_time": "2023-08-09T22:55:17.039304Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"client.schema.delete_all()\n",
|
|
"client.schema.create(schema)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "024ae133",
|
|
"metadata": {},
|
|
"source": [
|
|
"Next, we stage the elements for Weaviate using the `stage_for_weaviate` function and batch upload the results to Weaviate. `stage_for_weaviate` outputs a dictionary that conforms to the schema we created earlier. Once that data is stage, we can use the Weaviate client library to batch upload the results to Weaviate."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "a7018bb1",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:55:21.595936Z",
|
|
"start_time": "2023-08-09T22:55:21.591105Z"
|
|
}
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"data_objects = stage_for_weaviate(elements)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "af712d8e",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:55:23.590915Z",
|
|
"start_time": "2023-08-09T22:55:23.036903Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"100%|██████████| 28/28 [00:00<00:00, 69.56it/s]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"with client.batch(batch_size=10) as batch:\n",
|
|
" for data_object in tqdm.tqdm(data_objects):\n",
|
|
" batch.add_data_object(\n",
|
|
" data_object,\n",
|
|
" unstructured_class_name,\n",
|
|
" uuid=generate_uuid5(data_object),\n",
|
|
" )"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "dac10bf5",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now that the documents are in Weaviate, we're able to run queries against Weaviate!"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"id": "14098434",
|
|
"metadata": {
|
|
"ExecuteTime": {
|
|
"end_time": "2023-08-09T22:59:53.384425Z",
|
|
"start_time": "2023-08-09T22:59:53.202823Z"
|
|
}
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"{\n",
|
|
" \"data\": {\n",
|
|
" \"Get\": {\n",
|
|
" \"UnstructuredDocument\": [\n",
|
|
" {\n",
|
|
" \"_additional\": {\n",
|
|
" \"score\": \"0.23643185\"\n",
|
|
" },\n",
|
|
" \"text\": \"Deep Learning(DL)-based approaches are the state-of-the-art for a wide range of document image analysis (DIA) tasks including document image classi\\ufb01cation [11,\"\n",
|
|
" },\n",
|
|
" {\n",
|
|
" \"_additional\": {\n",
|
|
" \"score\": \"0.22914983\"\n",
|
|
" },\n",
|
|
" \"text\": \"LayoutParser: A Uni\\ufb01ed Toolkit for Deep Learning Based Document Image Analysis\"\n",
|
|
" }\n",
|
|
" ]\n",
|
|
" }\n",
|
|
" }\n",
|
|
"}\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"response = (\n",
|
|
" client.query\n",
|
|
" .get(\"UnstructuredDocument\", [\"text\", \"_additional {score}\"])\n",
|
|
" .with_bm25(\n",
|
|
" query=\"document understanding\"\n",
|
|
" )\n",
|
|
" .with_limit(2)\n",
|
|
" .do()\n",
|
|
")\n",
|
|
"\n",
|
|
"print(json.dumps(response, indent=4))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "ec2993a3fa4c1bed",
|
|
"metadata": {
|
|
"collapsed": false,
|
|
"jupyter": {
|
|
"outputs_hidden": false
|
|
}
|
|
},
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.17"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|