mirror of
https://github.com/Unstructured-IO/unstructured.git
synced 2025-07-03 23:20:35 +00:00

Thanks to Eric Hare @erichare at DataStax we have a new destination connector. This Pull Request implements an integration with [Astra DB](https://datastax.com) which allows for the Astra DB Vector Database to be compatible with Unstructured's set of integrations. To create your Astra account and authenticate with your `ASTRA_DB_APPLICATION_TOKEN`, and `ASTRA_DB_API_ENDPOINT`, follow these steps: 1. Create an account at https://astra.datastax.com 2. Login and create a new database 3. From the database page, in the right hand panel, you will find your API Endpoint 4. Beneath that, you can create a Token to be used Some notes about Astra DB: - Astra DB is a Vector Database which allows for high-performance database transactions, and enables modern GenAI apps [See here](https://docs.datastax.com/en/astra/astra-db-vector/get-started/concepts.html) - It supports similarity search via a number of methods [See here](https://docs.datastax.com/en/astra/astra-db-vector/get-started/concepts.html#metrics) - It also supports non-vector tables / collections
54 lines
1.8 KiB
Python
Executable File
54 lines
1.8 KiB
Python
Executable File
import click
|
|
from astrapy.db import AstraDB
|
|
|
|
|
|
@click.command()
|
|
@click.option("--token", type=str)
|
|
@click.option("--api-endpoint", type=str)
|
|
@click.option("--collection-name", type=str, default="collection_test")
|
|
@click.option("--embedding-dimension", type=int, default=384)
|
|
def run_check(token, api_endpoint, collection_name, embedding_dimension):
|
|
print(f"Checking contents of Astra DB collection: {collection_name}")
|
|
|
|
# Initialize our vector db
|
|
astra_db = AstraDB(token=token, api_endpoint=api_endpoint)
|
|
astra_db_collection = astra_db.collection(collection_name)
|
|
|
|
# Tally up the embeddings
|
|
docs_count = astra_db_collection.count_documents()
|
|
number_of_embeddings = docs_count["status"]["count"]
|
|
|
|
# Print the results
|
|
expected_embeddings = 3
|
|
print(
|
|
f"# of embeddings in collection vs expected: {number_of_embeddings}/{expected_embeddings}"
|
|
)
|
|
|
|
# Check that the assertion is true
|
|
assert number_of_embeddings == expected_embeddings, (
|
|
f"Number of rows in generated table ({number_of_embeddings})"
|
|
f"doesn't match expected value: {expected_embeddings}"
|
|
)
|
|
|
|
# Grab an embedding from the collection and search against itself
|
|
# Should get the same document back as the most similar
|
|
find_one = astra_db_collection.find_one()
|
|
random_vector = find_one["data"]["document"]["$vector"]
|
|
random_text = find_one["data"]["document"]["content"]
|
|
|
|
# Perform a similarity search
|
|
find_result = astra_db_collection.vector_find(random_vector, limit=1)
|
|
|
|
# Check that we retrieved the coded cleats copy data
|
|
assert find_result[0]["content"] == random_text
|
|
print("Vector search complete.")
|
|
|
|
# Clean up the collection
|
|
astra_db.delete_collection(collection_name)
|
|
|
|
print("Table deletion complete")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_check()
|