mirror of
https://github.com/Unstructured-IO/unstructured.git
synced 2025-07-07 00:52:42 +00:00

To test: > cd docs && make HTML Change logs: - Added AWS Marketplace documentation - Improved Azure Marketplace documentation - Networking section
111 lines
3.1 KiB
ReStructuredText
111 lines
3.1 KiB
ReStructuredText
Multi-files API Processing with Unstructured Connector & Context-Aware Chunking
|
|
===============================================================================
|
|
|
|
.. contents::
|
|
:local:
|
|
:depth: 2
|
|
|
|
Introduction
|
|
============
|
|
|
|
This guide demonstrates how to process multiple files using the Unstructured API and S3 Connector and implement context-aware chunking. The process involves installing dependencies, configuring settings, and utilizing Python scripts to manage and chunk data effectively.
|
|
|
|
Prerequisites
|
|
=============
|
|
|
|
Ensure you have Unstructured API key and access to an S3 bucket containing the target files.
|
|
|
|
Step 1: Install Unstructured and S3 Dependency
|
|
==============================================
|
|
|
|
Install the `unstructured` package with S3 support.
|
|
|
|
.. code-block:: python
|
|
|
|
pip install "unstructured[s3]"
|
|
|
|
|
|
Step 2: Import Libraries
|
|
========================
|
|
|
|
Import necessary libraries from the `unstructured` package for chunking and S3 processing.
|
|
|
|
.. code-block:: python
|
|
|
|
from unstructured.ingest.interfaces import (
|
|
FsspecConfig,
|
|
PartitionConfig,
|
|
ProcessorConfig,
|
|
ReadConfig,
|
|
)
|
|
from unstructured.ingest.runner import S3Runner
|
|
|
|
from unstructured.chunking.title import chunk_by_title
|
|
from unstructured.staging.base import dict_to_elements
|
|
|
|
Step 3: Configuration
|
|
=====================
|
|
|
|
Set up the API key and S3 URL for accessing the data.
|
|
|
|
.. code-block:: python
|
|
|
|
UNSTRUCTURED_API_KEY = os.getenv('UNSTRUCTURED_API_KEY')
|
|
S3_URL = "s3://rh-financial-reports/world-development-bank-2023/"
|
|
|
|
Step 4: Python Runner
|
|
=====================
|
|
|
|
Configure and run the S3Runner for processing the data.
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
runner = S3Runner(
|
|
processor_config=ProcessorConfig(
|
|
verbose=True,
|
|
output_dir="Connector-Output",
|
|
num_processes=8,
|
|
),
|
|
read_config=ReadConfig(),
|
|
partition_config=PartitionConfig(
|
|
partition_endpoint="https://api.unstructured.io/general/v0/general",
|
|
partition_by_api=True,
|
|
api_key=UNSTRUCTURED_API_KEY,
|
|
strategy="hi_res",
|
|
hi_res_model_name="yolox",
|
|
pdf_infer_table_structure=True,
|
|
),
|
|
fsspec_config=FsspecConfig(
|
|
remote_url=S3_URL,
|
|
),
|
|
)
|
|
|
|
runner.run(anonymous=True)
|
|
|
|
Step 5: Combine JSON Files from Multi-files Ingestion
|
|
=====================================================
|
|
|
|
Combine JSON files into a single dataset for further processing.
|
|
|
|
.. code-block:: python
|
|
|
|
combined_json_data = read_and_combine_json("Connector-Output/world-development-bank-2023")
|
|
|
|
Step 6: Convert into Unstructured Elements for Chunking
|
|
=======================================================
|
|
|
|
Convert the combined JSON data into Unstructured Elements and apply chunking by title.
|
|
|
|
.. code-block:: python
|
|
|
|
elements = dict_to_elements(combined_json_data)
|
|
chunks = chunk_by_title(elements)
|
|
|
|
Conclusion
|
|
==========
|
|
|
|
Following these steps allows for efficient processing of multiple files using the Unstructured S3 Connector. The context-aware chunking helps in organizing and analyzing the data effectively.
|
|
|